Format python codes with black. (#453)

This commit is contained in:
Yudong Jin 2023-04-09 05:05:35 +08:00 committed by GitHub
parent 1c8b7ef559
commit 5ddcb60825
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
45 changed files with 656 additions and 456 deletions

View File

@ -6,6 +6,7 @@ Author: Krahets (krahets@163.com)
import random
def random_access(nums: list[int]) -> int:
"""随机访问元素"""
# 在区间 [0, len(nums)-1] 中随机抽取一个数字
@ -14,6 +15,7 @@ def random_access(nums: list[int]) -> int:
random_num = nums[random_index]
return random_num
# 请注意Python 的 list 是动态数组,可以直接扩展
# 为了方便学习,本函数将 list 看作是长度不可变的数组
def extend(nums: list[int], enlarge: int) -> list[int]:
@ -26,6 +28,7 @@ def extend(nums: list[int], enlarge: int) -> list[int]:
# 返回扩展后的新数组
return res
def insert(nums: list[int], num: int, index: int) -> None:
"""在数组的索引 index 处插入元素 num"""
# 把索引 index 以及之后的所有元素向后移动一位
@ -34,12 +37,14 @@ def insert(nums: list[int], num: int, index: int) -> None:
# 将 num 赋给 index 处元素
nums[index] = num
def remove(nums: list[int], index: int) -> None:
"""删除索引 index 处元素"""
# 把索引 index 之后的所有元素向前移动一位
for i in range(index, len(nums) - 1):
nums[i] = nums[i + 1]
def traverse(nums: list[int]) -> None:
"""遍历数组"""
count = 0
@ -50,6 +55,7 @@ def traverse(nums: list[int]) -> None:
for num in nums:
count += 1
def find(nums: list[int], target: int) -> int:
"""在数组中查找指定元素"""
for i in range(len(nums)):
@ -57,33 +63,34 @@ def find(nums: list[int], target: int) -> int:
return i
return -1
""" Driver Code """
if __name__ == "__main__":
""" 初始化数组 """
# 初始化数组
arr: list[int] = [0] * 5
print("数组 arr =", arr)
nums: list[int] = [1, 3, 2, 5, 4]
print("数组 nums =", nums)
""" 随机访问 """
# 随机访问
random_num: int = random_access(nums)
print("在 nums 中获取随机元素", random_num)
""" 长度扩展 """
# 长度扩展
nums: list[int] = extend(nums, 3)
print("将数组长度扩展至 8 ,得到 nums =", nums)
""" 插入元素 """
# 插入元素
insert(nums, 6, 3)
print("在索引 3 处插入数字 6 ,得到 nums =", nums)
""" 删除元素 """
# 删除元素
remove(nums, 2)
print("删除索引 2 处的元素,得到 nums =", nums)
""" 遍历数组 """
# 遍历数组
traverse(nums)
""" 查找元素 """
# 查找元素
index: int = find(nums, 3)
print("在 nums 中查找元素 3 ,得到索引 =", index)

View File

@ -5,15 +5,18 @@ Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
def insert(n0: ListNode, P: ListNode) -> None:
"""在链表的节点 n0 之后插入节点 P"""
n1 = n0.next
P.next = n1
n0.next = P
def remove(n0: ListNode) -> None:
"""删除链表的节点 n0 之后的首个节点"""
if not n0.next:
@ -23,6 +26,7 @@ def remove(n0: ListNode) -> None:
n1 = P.next
n0.next = n1
def access(head: ListNode, index: int) -> ListNode | None:
"""访问链表中索引为 index 的节点"""
for _ in range(index):
@ -31,6 +35,7 @@ def access(head: ListNode, index: int) -> ListNode | None:
head = head.next
return head
def find(head: ListNode, target: int) -> int:
"""在链表中查找值为 target 的首个节点"""
index = 0
@ -44,7 +49,7 @@ def find(head: ListNode, target: int) -> int:
""" Driver Code """
if __name__ == "__main__":
""" 初始化链表 """
# 初始化链表
# 初始化各个节点
n0 = ListNode(1)
n1 = ListNode(3)
@ -59,20 +64,20 @@ if __name__ == "__main__":
print("初始化的链表为")
print_linked_list(n0)
""" 插入节点 """
# 插入节点
insert(n0, ListNode(0))
print("插入节点后的链表为")
print_linked_list(n0)
""" 删除节点 """
# 删除节点
remove(n0)
print("删除节点后的链表为")
print_linked_list(n0)
""" 访问节点 """
# 访问节点
node: ListNode = access(n0, 3)
print("链表中索引 3 处的节点的值 = {}".format(node.val))
""" 查找节点 """
# 查找节点
index: int = find(n0, 2)
print("链表中值为 2 的节点的索引 = {}".format(index))

View File

@ -6,23 +6,23 @@ Author: Krahets (krahets@163.com)
""" Driver Code """
if __name__ == "__main__":
""" 初始化列表 """
# 初始化列表
arr: list[int] = [1, 3, 2, 5, 4]
print("列表 arr =", arr)
""" 访问元素 """
# 访问元素
num: int = arr[1]
print("访问索引 1 处的元素,得到 num =", num)
""" 更新元素 """
# 更新元素
arr[1] = 0
print("将索引 1 处的元素更新为 0 ,得到 arr =", arr)
""" 清空列表 """
# 清空列表
arr.clear()
print("清空列表后 arr =", arr)
""" 尾部添加元素 """
# 尾部添加元素
arr.append(1)
arr.append(3)
arr.append(2)
@ -30,29 +30,29 @@ if __name__ == "__main__":
arr.append(4)
print("添加元素后 arr =", arr)
""" 中间插入元素 """
# 中间插入元素
arr.insert(3, 6)
print("在索引 3 处插入数字 6 ,得到 arr =", arr)
""" 删除元素 """
# 删除元素
arr.pop(3)
print("删除索引 3 处的元素,得到 arr =", arr)
""" 通过索引遍历列表 """
# 通过索引遍历列表
count: int = 0
for i in range(len(arr)):
count += 1
""" 直接遍历列表元素 """
# 直接遍历列表元素
count: int = 0
for n in arr:
count += 1
""" 拼接两个列表 """
# 拼接两个列表
arr1: list[int] = [6, 8, 7, 10, 9]
arr += arr1
print("将列表 arr1 拼接到 arr 之后,得到 arr =", arr)
""" 排序列表 """
# 排序列表
arr.sort()
print("排序列表后 arr =", arr)

View File

@ -4,8 +4,10 @@ Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
"""
class MyList:
"""列表类简易实现"""
def __init__(self):
"""构造方法"""
self.__capacity: int = 10 # 列表容量
@ -79,36 +81,38 @@ class MyList:
""" Driver Code """
if __name__ == "__main__":
""" 初始化列表 """
# 初始化列表
my_list = MyList()
""" 尾部添加元素 """
# 尾部添加元素
my_list.add(1)
my_list.add(3)
my_list.add(2)
my_list.add(5)
my_list.add(4)
print("列表 my_list = {} ,容量 = {} ,长度 = {}"
.format(my_list.to_array(), my_list.capacity(), my_list.size()))
print(
f"列表 my_list = {my_list.to_array()} ,容量 = {my_list.capacity()} ,长度 = {my_list.size()}"
)
""" 中间插入元素 """
# 中间插入元素
my_list.insert(6, index=3)
print("在索引 3 处插入数字 6 ,得到 my_list =", my_list.to_array())
""" 删除元素 """
# 删除元素
my_list.remove(3)
print("删除索引 3 处的元素,得到 my_list =", my_list.to_array())
""" 访问元素 """
# 访问元素
num = my_list.get(1)
print("访问索引 1 处的元素,得到 num =", num)
""" 更新元素 """
# 更新元素
my_list.set(0, 1)
print("将索引 1 处的元素更新为 0 ,得到 my_list =", my_list.to_array())
""" 测试扩容机制 """
# 测试扩容机制
for i in range(10):
# 在 i = 5 时,列表长度将超出列表容量,此时触发扩容机制
my_list.add(i)
print("扩容后的列表 my_list = {} ,容量 = {} ,长度 = {}"
.format(my_list.to_array(), my_list.capacity(), my_list.size()))
print(
"扩容后的列表 {my_list.to_array()} ,容量 = {my_list.capacity()} ,长度 = {my_list.size()}"
)

View File

@ -4,6 +4,7 @@ Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
"""
def two_sum_brute_force(nums: list[int], target: int) -> list[int]:
"""方法一:暴力枚举"""
# 两层循环,时间复杂度 O(n^2)
@ -13,6 +14,7 @@ def two_sum_brute_force(nums: list[int], target: int) -> list[int]:
return [i, j]
return []
def two_sum_hash_table(nums: list[int], target: int) -> list[int]:
"""方法二:辅助哈希表"""
# 辅助哈希表,空间复杂度 O(n)
@ -26,7 +28,7 @@ def two_sum_hash_table(nums: list[int], target: int) -> list[int]:
""" Driver Code """
if __name__ == '__main__':
if __name__ == "__main__":
# ======= Test Case =======
nums = [2, 7, 11, 15]
target = 9

View File

@ -5,14 +5,17 @@ Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
def function() -> int:
"""函数"""
# do something
return 0
def constant(n: int) -> None:
"""常数阶"""
# 常量、变量、对象占用 O(1) 空间
@ -26,6 +29,7 @@ def constant(n: int) -> None:
for _ in range(n):
function()
def linear(n: int) -> None:
"""线性阶"""
# 长度为 n 的列表占用 O(n) 空间
@ -35,27 +39,34 @@ def linear(n: int) -> None:
for i in range(n):
mapp[i] = str(i)
def linear_recur(n: int) -> None:
"""线性阶(递归实现)"""
print("递归 n =", n)
if n == 1: return
if n == 1:
return
linear_recur(n - 1)
def quadratic(n: int) -> None:
"""平方阶"""
# 二维列表占用 O(n^2) 空间
num_matrix: list[list[int]] = [[0] * n for _ in range(n)]
def quadratic_recur(n: int) -> int:
"""平方阶(递归实现)"""
if n <= 0: return 0
if n <= 0:
return 0
# 数组 nums 长度为 n, n-1, ..., 2, 1
nums: list[int] = [0] * n
return quadratic_recur(n - 1)
def build_tree(n: int) -> TreeNode | None:
"""指数阶(建立满二叉树)"""
if n == 0: return None
if n == 0:
return None
root = TreeNode(0)
root.left = build_tree(n - 1)
root.right = build_tree(n - 1)

View File

@ -4,6 +4,7 @@ Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
"""
def constant(n: int) -> int:
"""常数阶"""
count: int = 0
@ -12,6 +13,7 @@ def constant(n: int) -> int:
count += 1
return count
def linear(n: int) -> int:
"""线性阶"""
count: int = 0
@ -19,6 +21,7 @@ def linear(n: int) -> int:
count += 1
return count
def array_traversal(nums: list[int]) -> int:
"""线性阶(遍历数组)"""
count: int = 0
@ -27,6 +30,7 @@ def array_traversal(nums: list[int]) -> int:
count += 1
return count
def quadratic(n: int) -> int:
"""平方阶"""
count: int = 0
@ -36,6 +40,7 @@ def quadratic(n: int) -> int:
count += 1
return count
def bubble_sort(nums: list[int]) -> int:
"""平方阶(冒泡排序)"""
count: int = 0 # 计数器
@ -51,6 +56,7 @@ def bubble_sort(nums: list[int]) -> int:
count += 3 # 元素交换包含 3 个单元操作
return count
def exponential(n: int) -> int:
"""指数阶(循环实现)"""
count: int = 0
@ -63,11 +69,14 @@ def exponential(n: int) -> int:
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
def exp_recur(n: int) -> int:
"""指数阶(递归实现)"""
if n == 1: return 1
if n == 1:
return 1
return exp_recur(n - 1) + exp_recur(n - 1) + 1
def logarithmic(n: float) -> int:
"""对数阶(循环实现)"""
count: int = 0
@ -76,23 +85,28 @@ def logarithmic(n: float) -> int:
count += 1
return count
def log_recur(n: float) -> int:
"""对数阶(递归实现)"""
if n <= 1: return 0
if n <= 1:
return 0
return log_recur(n / 2) + 1
def linear_log_recur(n: float) -> int:
"""线性对数阶"""
if n <= 1: return 1
count: int = linear_log_recur(n // 2) + \
linear_log_recur(n // 2)
if n <= 1:
return 1
count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)
for _ in range(n):
count += 1
return count
def factorial_recur(n: int) -> int:
"""阶乘阶(递归实现)"""
if n == 0: return 1
if n == 0:
return 1
count: int = 0
# 从 1 个分裂出 n 个
for _ in range(n):

View File

@ -6,6 +6,7 @@ Author: Krahets (krahets@163.com)
import random
def random_numbers(n: int) -> list[int]:
"""生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱"""
# 生成数组 nums =: 1, 2, 3, ..., n
@ -14,6 +15,7 @@ def random_numbers(n: int) -> list[int]:
random.shuffle(nums)
return nums
def find_one(nums: list[int]) -> int:
"""查找数组 nums 中数字 1 所在索引"""
for i in range(len(nums)):

View File

@ -5,11 +5,14 @@ Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
class GraphAdjList:
"""基于邻接表实现的无向图类"""
def __init__(self, edges: list[list[Vertex]]) -> None:
"""构造方法"""
# 邻接表key: 顶点value该顶点的所有邻接顶点
@ -68,33 +71,39 @@ class GraphAdjList:
""" Driver Code """
if __name__ == "__main__":
""" 初始化无向图 """
# 初始化无向图
v = vals_to_vets([1, 3, 2, 5, 4])
edges = [[v[0], v[1]], [v[0], v[3]], [v[1], v[2]],
[v[2], v[3]], [v[2], v[4]], [v[3], v[4]]]
edges = [
[v[0], v[1]],
[v[0], v[3]],
[v[1], v[2]],
[v[2], v[3]],
[v[2], v[4]],
[v[3], v[4]],
]
graph = GraphAdjList(edges)
print("\n初始化后,图为")
graph.print()
""" 添加边 """
# 添加边
# 顶点 1, 2 即 v[0], v[2]
graph.add_edge(v[0], v[2])
print("\n添加边 1-2 后,图为")
graph.print()
""" 删除边 """
# 删除边
# 顶点 1, 3 即 v[0], v[1]
graph.remove_edge(v[0], v[1])
print("\n删除边 1-3 后,图为")
graph.print()
""" 添加顶点 """
# 添加顶点
v5 = Vertex(6)
graph.add_vertex(v5)
print("\n添加顶点 6 后,图为")
graph.print()
""" 删除顶点 """
# 删除顶点
# 顶点 3 即 v[1]
graph.remove_vertex(v[1])
print("\n删除顶点 3 后,图为")

View File

@ -5,11 +5,14 @@ Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
class GraphAdjMat:
"""基于邻接矩阵实现的无向图类"""
# 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
vertices: list[int] = []
# 邻接矩阵,行列索引对应“顶点索引”
@ -83,7 +86,7 @@ class GraphAdjMat:
""" Driver Code """
if __name__ == "__main__":
""" 初始化无向图 """
# 初始化无向图
# 请注意edges 元素代表顶点索引,即对应 vertices 元素索引
vertices: list[int] = [1, 3, 2, 5, 4]
edges: list[list[int]] = [[0, 1], [0, 3], [1, 2], [2, 3], [2, 4], [3, 4]]
@ -91,24 +94,24 @@ if __name__ == "__main__":
print("\n初始化后,图为")
graph.print()
""" 添加边 """
# 添加边
# 顶点 1, 2 的索引分别为 0, 2
graph.add_edge(0, 2)
print("\n添加边 1-2 后,图为")
graph.print()
""" 删除边 """
# 删除边
# 顶点 1, 3 的索引分别为 0, 1
graph.remove_edge(0, 1)
print("\n删除边 1-3 后,图为")
graph.print()
""" 添加顶点 """
# 添加顶点
graph.add_vertex(6)
print("\n添加顶点 6 后,图为")
graph.print()
""" 删除顶点 """
# 删除顶点
# 顶点 3 的索引为 1
graph.remove_vertex(1)
print("\n删除顶点 3 后,图为")

View File

@ -5,11 +5,13 @@ Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
from collections import deque
from graph_adjacency_list import GraphAdjList
def graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
"""广度优先遍历 BFS"""
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
@ -35,16 +37,27 @@ def graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
""" Driver Code """
if __name__ == "__main__":
"""初始化无向图"""
# 初始化无向图
v = vals_to_vets([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
edges = [[v[0], v[1]], [v[0], v[3]], [v[1], v[2]], [v[1], v[4]],
[v[2], v[5]], [v[3], v[4]], [v[3], v[6]], [v[4], v[5]],
[v[4], v[7]], [v[5], v[8]], [v[6], v[7]], [v[7], v[8]]]
edges = [
[v[0], v[1]],
[v[0], v[3]],
[v[1], v[2]],
[v[1], v[4]],
[v[2], v[5]],
[v[3], v[4]],
[v[3], v[6]],
[v[4], v[5]],
[v[4], v[7]],
[v[5], v[8]],
[v[6], v[7]],
[v[7], v[8]],
]
graph = GraphAdjList(edges)
print("\n初始化后,图为")
graph.print()
"""广度优先遍历 BFS"""
# 广度优先遍历 BFS
res = graph_bfs(graph, v[0])
print("\n广度优先遍历BFS顶点序列为")
print(vets_to_vals(res))

View File

@ -5,10 +5,12 @@ Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
from graph_adjacency_list import GraphAdjList
def dfs(graph: GraphAdjList, visited: set[Vertex], res: list[Vertex], vet: Vertex):
"""深度优先遍历 DFS 辅助函数"""
res.append(vet) # 记录访问顶点
@ -20,6 +22,7 @@ def dfs(graph: GraphAdjList, visited: set[Vertex], res: list[Vertex], vet: Verte
# 递归访问邻接顶点
dfs(graph, visited, res, adjVet)
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
def graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
"""深度优先遍历 DFS"""
@ -35,8 +38,14 @@ def graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
if __name__ == "__main__":
# 初始化无向图
v = vals_to_vets([0, 1, 2, 3, 4, 5, 6])
edges = [[v[0], v[1]], [v[0], v[3]], [v[1], v[2]],
[v[2], v[5]], [v[4], v[5]], [v[5], v[6]]]
edges = [
[v[0], v[1]],
[v[0], v[3]],
[v[1], v[2]],
[v[2], v[5]],
[v[4], v[5]],
[v[5], v[6]],
]
graph = GraphAdjList(edges)
print("\n初始化后,图为")
graph.print()

View File

@ -4,14 +4,18 @@ Created Time: 2022-12-14
Author: msk397 (machangxinq@gmail.com)
"""
class Entry:
"""键值对 int->String"""
def __init__(self, key: int, val: str):
self.key = key
self.val = val
class ArrayHashMap:
"""基于数组简易实现的哈希表"""
def __init__(self):
"""构造方法"""
# 初始化数组,包含 100 个桶
@ -75,10 +79,10 @@ class ArrayHashMap:
""" Driver Code """
if __name__ == "__main__":
""" 初始化哈希表 """
# 初始化哈希表
mapp = ArrayHashMap()
""" 添加操作 """
# 添加操作
# 在哈希表中添加键值对 (key, value)
mapp.put(12836, "小哈")
mapp.put(15937, "小啰")
@ -88,18 +92,18 @@ if __name__ == "__main__":
print("\n添加完成后,哈希表为\nKey -> Value")
mapp.print()
""" 查询操作 """
# 查询操作
# 向哈希表输入键 key ,得到值 value
name = mapp.get(15937)
print("\n输入学号 15937 ,查询到姓名 " + name)
""" 删除操作 """
# 删除操作
# 在哈希表中删除键值对 (key, value)
mapp.remove(10583)
print("\n删除 10583 后,哈希表为\nKey -> Value")
mapp.print()
""" 遍历哈希表 """
# 遍历哈希表
print("\n遍历键值对 Key->Value")
for pair in mapp.entry_set():
print(pair.key, "->", pair.val)

View File

@ -5,15 +5,16 @@ Author: msk397 (machangxinq@gmail.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
""" Driver Code """
if __name__ == "__main__":
""" 初始化哈希表 """
# 初始化哈希表
mapp = dict[int, str]()
""" 添加操作 """
# 添加操作
# 在哈希表中添加键值对 (key, value)
mapp[12836] = "小哈"
mapp[15937] = "小啰"
@ -23,18 +24,18 @@ if __name__ == "__main__":
print("\n添加完成后,哈希表为\nKey -> Value")
print_dict(mapp)
""" 查询操作 """
# 查询操作
# 向哈希表输入键 key ,得到值 value
name: str = mapp[15937]
print("\n输入学号 15937 ,查询到姓名 " + name)
""" 删除操作 """
# 删除操作
# 在哈希表中删除键值对 (key, value)
mapp.pop(10583)
print("\n删除 10583 后,哈希表为\nKey -> Value")
print_dict(mapp)
""" 遍历哈希表 """
# 遍历哈希表
print("\n遍历键值对 Key->Value")
for key, value in mapp.items():
print(key, "->", value)

View File

@ -5,6 +5,7 @@ Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
@ -16,11 +17,13 @@ def test_push(heap: list, val: int, flag: int = 1) -> None:
print(f"\n元素 {val} 入堆后")
print_heap([flag * val for val in heap])
def test_pop(heap: list, flag: int = 1) -> None:
val = flag * heapq.heappop(heap) # 堆顶元素出堆
print(f"\n堆顶元素 {val} 出堆后")
print_heap([flag * val for val in heap])
""" Driver Code """
if __name__ == "__main__":
# 初始化小顶堆

View File

@ -5,11 +5,14 @@ Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
class MaxHeap:
"""大顶堆"""
def __init__(self, nums: list[int]):
"""构造方法"""
# 将列表元素原封不动添加进堆

View File

@ -4,6 +4,7 @@ Created Time: 2022-11-26
Author: timi (xisunyy@163.com)
"""
def binary_search(nums: list[int], target: int) -> int:
"""二分查找(双闭区间)"""
# 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
@ -36,7 +37,7 @@ def binary_search1(nums: list[int], target: int) -> int:
""" Driver Code """
if __name__ == '__main__':
if __name__ == "__main__":
target: int = 6
nums: list[int] = [1, 3, 6, 8, 12, 15, 23, 67, 70, 92]

View File

@ -5,16 +5,21 @@ Author: timi (xisunyy@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
def hashing_search_array(mapp: dict[int, int], target: int) -> int:
"""哈希查找(数组)"""
# 哈希表的 key: 目标元素value: 索引
# 若哈希表中无此 key ,返回 -1
return mapp.get(target, -1)
def hashing_search_linkedlist(mapp: dict[int, ListNode], target: int) -> ListNode | None:
def hashing_search_linkedlist(
mapp: dict[int, ListNode], target: int
) -> ListNode | None:
"""哈希查找(链表)"""
# 哈希表的 key: 目标元素value: 节点对象
# 若哈希表中无此 key ,返回 None
@ -22,7 +27,7 @@ def hashing_search_linkedlist(mapp: dict[int, ListNode], target: int) -> ListNod
""" Driver Code """
if __name__ == '__main__':
if __name__ == "__main__":
target: int = 3
# 哈希查找(数组)

View File

@ -5,9 +5,11 @@ Author: timi (xisunyy@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
def linear_search_array(nums: list[int], target: int) -> int:
"""线性查找(数组)"""
# 遍历数组
@ -16,6 +18,7 @@ def linear_search_array(nums: list[int], target: int) -> int:
return i
return -1 # 未找到目标元素,返回 -1
def linear_search_linkedlist(head: ListNode, target: int) -> ListNode | None:
"""线性查找(链表)"""
# 遍历链表
@ -27,7 +30,7 @@ def linear_search_linkedlist(head: ListNode, target: int) -> ListNode | None:
""" Driver Code """
if __name__ == '__main__':
if __name__ == "__main__":
target: int = 3
# 在数组中执行线性查找

View File

@ -4,6 +4,7 @@ Created Time: 2022-11-25
Author: timi (xisunyy@163.com)
"""
def bubble_sort(nums: list[int]) -> None:
"""冒泡排序"""
n: int = len(nums)
@ -15,6 +16,7 @@ def bubble_sort(nums: list[int]) -> None:
# 交换 nums[j] 与 nums[j + 1]
nums[j], nums[j + 1] = nums[j + 1], nums[j]
def bubble_sort_with_flag(nums: list[int]) -> None:
"""冒泡排序(标志优化)"""
n: int = len(nums)
@ -32,7 +34,7 @@ def bubble_sort_with_flag(nums: list[int]) -> None:
""" Driver Code """
if __name__ == '__main__':
if __name__ == "__main__":
nums: list[int] = [4, 1, 3, 1, 5, 2]
bubble_sort(nums)
print("排序后数组 nums =", nums)

View File

@ -4,6 +4,7 @@ Created Time: 2023-03-30
Author: Krahets (krahets@163.com)
"""
def bucket_sort(nums: list[float]) -> None:
# 初始化 k = n/2 个桶,预期向每个桶分配 2 个元素
k = len(nums) // 2
@ -26,7 +27,7 @@ def bucket_sort(nums: list[float]) -> None:
i += 1
if __name__ == '__main__':
if __name__ == "__main__":
# 设输入数据为浮点数,范围为 [0, 1)
nums = [0.49, 0.96, 0.82, 0.09, 0.57, 0.43, 0.91, 0.75, 0.15, 0.37]
bucket_sort(nums)

View File

@ -4,6 +4,7 @@ Created Time: 2023-03-21
Author: Krahets (krahets@163.com)
"""
def counting_sort_naive(nums: list[int]) -> None:
"""计数排序"""
# 简单实现,无法用于排序对象
@ -23,6 +24,7 @@ def counting_sort_naive(nums: list[int]) -> None:
nums[i] = num
i += 1
def counting_sort(nums: list[int]) -> None:
"""计数排序"""
# 完整实现,可排序对象,并且是稳定排序
@ -49,6 +51,7 @@ def counting_sort(nums: list[int]) -> None:
for i in range(n):
nums[i] = res[i]
""" Driver Code """
if __name__ == "__main__":
nums = [1, 0, 1, 2, 0, 4, 0, 2, 2, 4]

View File

@ -4,6 +4,7 @@ Created Time: 2022-11-25
Author: timi (xisunyy@163.com)
"""
def insertion_sort(nums: list[int]) -> None:
"""插入排序"""
# 外循环base = nums[1], nums[2], ..., nums[n-1]
@ -18,7 +19,7 @@ def insertion_sort(nums: list[int]) -> None:
""" Driver Code """
if __name__ == '__main__':
if __name__ == "__main__":
nums: list[int] = [4, 1, 3, 1, 5, 2]
insertion_sort(nums)
print("排序后数组 nums =", nums)

View File

@ -4,6 +4,7 @@ Created Time: 2022-11-25
Author: timi (xisunyy@163.com)
"""
def merge(nums: list[int], left: int, mid: int, right: int) -> None:
"""合并左子数组和右子数组"""
# 左子数组区间 [left, mid]
@ -34,6 +35,7 @@ def merge(nums: list[int], left: int, mid: int, right: int) -> None:
nums[k] = tmp[j]
j += 1
def merge_sort(nums: list[int], left: int, right: int) -> None:
"""归并排序"""
# 终止条件
@ -48,7 +50,7 @@ def merge_sort(nums: list[int], left: int, right: int) -> None:
""" Driver Code """
if __name__ == '__main__':
if __name__ == "__main__":
nums: list[int] = [7, 3, 2, 6, 0, 1, 5, 4]
merge_sort(nums, 0, len(nums) - 1)
print("归并排序完成后 nums =", nums)

View File

@ -4,8 +4,10 @@ Created Time: 2022-11-25
Author: timi (xisunyy@163.com)
"""
class QuickSort:
"""快速排序类"""
def partition(self, nums: list[int], left: int, right: int) -> int:
"""哨兵划分"""
# 以 nums[left] 作为基准数
@ -32,8 +34,10 @@ class QuickSort:
self.quick_sort(nums, left, pivot - 1)
self.quick_sort(nums, pivot + 1, right)
class QuickSortMedian:
"""快速排序类(中位基准数优化)"""
def median_three(self, nums: list[int], left: int, mid: int, right: int) -> int:
"""选取三个元素的中位数"""
# 此处使用异或运算来简化代码
@ -74,8 +78,10 @@ class QuickSortMedian:
self.quick_sort(nums, left, pivot - 1)
self.quick_sort(nums, pivot + 1, right)
class QuickSortTailCall:
"""快速排序类(尾递归优化)"""
def partition(self, nums: list[int], left: int, right: int) -> int:
"""哨兵划分"""
# 以 nums[left] 作为基准数
@ -107,7 +113,7 @@ class QuickSortTailCall:
""" Driver Code """
if __name__ == '__main__':
if __name__ == "__main__":
# 快速排序
nums: list[int] = [2, 4, 1, 0, 3, 5]
QuickSort().quick_sort(nums, 0, len(nums) - 1)

View File

@ -10,6 +10,7 @@ def digit(num: int, exp: int) -> int:
# 传入 exp 而非 k 可以避免在此重复执行昂贵的次方计算
return (num // exp) % 10
def counting_sort_digit(nums: list[int], exp: int) -> None:
"""计数排序(根据 nums 第 k 位排序)"""
# 十进制的位范围为 0~9 ,因此需要长度为 10 的桶
@ -33,6 +34,7 @@ def counting_sort_digit(nums: list[int], exp: int) -> None:
for i in range(n):
nums[i] = res[i]
def radix_sort(nums: list[int]) -> None:
"""基数排序"""
# 获取数组的最大元素,用于判断最大位数
@ -47,10 +49,21 @@ def radix_sort(nums: list[int]) -> None:
counting_sort_digit(nums, exp)
exp *= 10
""" Driver Code """
if __name__ == '__main__':
if __name__ == "__main__":
# 基数排序
nums = [10546151, 35663510, 42865989, 34862445, 81883077,
88906420, 72429244, 30524779, 82060337, 63832996]
nums = [
10546151,
35663510,
42865989,
34862445,
81883077,
88906420,
72429244,
30524779,
82060337,
63832996,
]
radix_sort(nums)
print("基数排序完成后 nums =", nums)

View File

@ -4,8 +4,10 @@ Created Time: 2023-03-01
Author: Krahets (krahets@163.com)
"""
class ArrayDeque:
"""基于环形数组实现的双向队列"""
def __init__(self, capacity: int) -> None:
"""构造方法"""
self.__nums: list[int] = [0] * capacity
@ -91,35 +93,35 @@ class ArrayDeque:
""" Driver Code """
if __name__ == "__main__":
""" 初始化双向队列 """
# 初始化双向队列
deque = ArrayDeque(10)
deque.push_last(3)
deque.push_last(2)
deque.push_last(5)
print("双向队列 deque =", deque.to_array())
""" 访问元素 """
# 访问元素
peek_first: int = deque.peek_first()
print("队首元素 peek_first =", peek_first)
peek_last: int = deque.peek_last()
print("队尾元素 peek_last =", peek_last)
""" 元素入队 """
# 元素入队
deque.push_last(4)
print("元素 4 队尾入队后 deque =", deque.to_array())
deque.push_first(1)
print("元素 1 队首入队后 deque =", deque.to_array())
""" 元素出队 """
# 元素出队
pop_last: int = deque.pop_last()
print("队尾出队元素 =", pop_last, ",队尾出队后 deque =", deque.to_array())
pop_first: int = deque.pop_first()
print("队首出队元素 =", pop_first, ",队首出队后 deque =", deque.to_array())
""" 获取双向队列的长度 """
# 获取双向队列的长度
size: int = deque.size()
print("双向队列长度 size =", size)
""" 判断双向队列是否为空 """
# 判断双向队列是否为空
is_empty: bool = deque.is_empty()
print("双向队列是否为空 =", is_empty)

View File

@ -4,8 +4,10 @@ Created Time: 2022-12-01
Author: Peng Chen (pengchzn@gmail.com)
"""
class ArrayQueue:
"""基于环形数组实现的队列"""
def __init__(self, size: int) -> None:
"""构造方法"""
self.__nums: list[int] = [0] * size # 用于存储队列元素的数组
@ -59,10 +61,10 @@ class ArrayQueue:
""" Driver Code """
if __name__ == "__main__":
""" 初始化队列 """
# 初始化队列
queue = ArrayQueue(10)
""" 元素入队 """
# 元素入队
queue.push(1)
queue.push(3)
queue.push(2)
@ -70,24 +72,24 @@ if __name__ == "__main__":
queue.push(4)
print("队列 queue =", queue.to_list())
""" 访问队首元素 """
# 访问队首元素
peek: int = queue.peek()
print("队首元素 peek =", peek)
""" 元素出队 """
# 元素出队
pop: int = queue.pop()
print("出队元素 pop =", pop)
print("出队后 queue =", queue.to_list())
""" 获取队列的长度 """
# 获取队列的长度
size: int = queue.size()
print("队列长度 size =", size)
""" 判断队列是否为空 """
# 判断队列是否为空
is_empty: bool = queue.is_empty()
print("队列是否为空 =", is_empty)
""" 测试环形数组 """
# 测试环形数组
for i in range(10):
queue.push(i)
queue.pop()

View File

@ -4,8 +4,10 @@ Created Time: 2022-11-29
Author: Peng Chen (pengchzn@gmail.com)
"""
class ArrayStack:
"""基于数组实现的栈"""
def __init__(self) -> None:
"""构造方法"""
self.__stack: list[int] = []
@ -39,10 +41,10 @@ class ArrayStack:
""" Driver Code """
if __name__ == "__main__":
""" 初始化栈 """
# 初始化栈
stack = ArrayStack()
""" 元素入栈 """
# 元素入栈
stack.push(1)
stack.push(3)
stack.push(2)
@ -50,19 +52,19 @@ if __name__ == "__main__":
stack.push(4)
print("栈 stack =", stack.to_list())
""" 访问栈顶元素 """
# 访问栈顶元素
peek: int = stack.peek()
print("栈顶元素 peek =", peek)
""" 元素出栈 """
# 元素出栈
pop: int = stack.pop()
print("出栈元素 pop =", pop)
print("出栈后 stack =", stack.to_list())
""" 获取栈的长度 """
# 获取栈的长度
size: int = stack.size()
print("栈的长度 size =", size)
""" 判断是否为空 """
# 判断是否为空
is_empty: bool = stack.is_empty()
print("栈是否为空 =", is_empty)

View File

@ -8,10 +8,10 @@ from collections import deque
""" Driver Code """
if __name__ == "__main__":
""" 初始化双向队列 """
# 初始化双向队列
deq: deque[int] = deque()
""" 元素入队 """
# 元素入队
deq.append(2) # 添加至队尾
deq.append(5)
deq.append(4)
@ -19,13 +19,13 @@ if __name__ == "__main__":
deq.appendleft(1)
print("双向队列 deque =", deq)
""" 访问元素 """
# 访问元素
front: int = deq[0] # 队首元素
print("队首元素 front =", front)
rear: int = deq[-1] # 队尾元素
print("队尾元素 rear =", rear)
""" 元素出队 """
# 元素出队
pop_front: int = deq.popleft() # 队首元素出队
print("队首出队元素 pop_front =", pop_front)
print("队首出队后 deque =", deq)
@ -33,10 +33,10 @@ if __name__ == "__main__":
print("队尾出队元素 pop_rear =", pop_rear)
print("队尾出队后 deque =", deq)
""" 获取双向队列的长度 """
# 获取双向队列的长度
size: int = len(deq)
print("双向队列长度 size =", size)
""" 判断双向队列是否为空 """
# 判断双向队列是否为空
is_empty: bool = len(deq) == 0
print("双向队列是否为空 =", is_empty)

View File

@ -4,16 +4,20 @@ Created Time: 2023-03-01
Author: Krahets (krahets@163.com)
"""
class ListNode:
"""双向链表节点"""
def __init__(self, val: int) -> None:
"""构造方法"""
self.val: int = val
self.next: ListNode | None = None # 后继节点引用(指针)
self.prev: ListNode | None = None # 前驱节点引用(指针)
class LinkedListDeque:
"""基于双向链表实现的双向队列"""
def __init__(self) -> None:
"""构造方法"""
self.front: ListNode | None = None # 头节点 front
@ -110,35 +114,35 @@ class LinkedListDeque:
""" Driver Code """
if __name__ == "__main__":
""" 初始化双向队列 """
# 初始化双向队列
deque = LinkedListDeque()
deque.push_last(3)
deque.push_last(2)
deque.push_last(5)
print("双向队列 deque =", deque.to_array())
""" 访问元素 """
# 访问元素
peek_first: int = deque.peek_first()
print("队首元素 peek_first =", peek_first)
peek_last: int = deque.peek_last()
print("队尾元素 peek_last =", peek_last)
""" 元素入队 """
# 元素入队
deque.push_last(4)
print("元素 4 队尾入队后 deque =", deque.to_array())
deque.push_first(1)
print("元素 1 队首入队后 deque =", deque.to_array())
""" 元素出队 """
# 元素出队
pop_last: int = deque.pop_last()
print("队尾出队元素 =", pop_last, ",队尾出队后 deque =", deque.to_array())
pop_first: int = deque.pop_first()
print("队首出队元素 =", pop_first, ",队首出队后 deque =", deque.to_array())
""" 获取双向队列的长度 """
# 获取双向队列的长度
size: int = deque.size()
print("双向队列长度 size =", size)
""" 判断双向队列是否为空 """
# 判断双向队列是否为空
is_empty: bool = deque.is_empty()
print("双向队列是否为空 =", is_empty)

View File

@ -5,11 +5,14 @@ Author: Peng Chen (pengchzn@gmail.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
class LinkedListQueue:
"""基于链表实现的队列"""
def __init__(self):
"""构造方法"""
self.__front: ListNode | None = None # 头节点 front
@ -65,10 +68,10 @@ class LinkedListQueue:
""" Driver Code """
if __name__ == "__main__":
""" 初始化队列 """
# 初始化队列
queue = LinkedListQueue()
""" 元素入队 """
# 元素入队
queue.push(1)
queue.push(3)
queue.push(2)
@ -76,19 +79,19 @@ if __name__ == "__main__":
queue.push(4)
print("队列 queue =", queue.to_list())
""" 访问队首元素 """
# 访问队首元素
peek: int = queue.peek()
print("队首元素 front =", peek)
""" 元素出队 """
# 元素出队
pop_front: int = queue.pop()
print("出队元素 pop =", pop_front)
print("出队后 queue =", queue.to_list())
""" 获取队列的长度 """
# 获取队列的长度
size: int = queue.size()
print("队列长度 size =", size)
""" 判断队列是否为空 """
# 判断队列是否为空
is_empty: bool = queue.is_empty()
print("队列是否为空 =", is_empty)

View File

@ -5,11 +5,14 @@ Author: Peng Chen (pengchzn@gmail.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
class LinkedListStack:
"""基于链表实现的栈"""
def __init__(self):
"""构造方法"""
self.__peek: ListNode | None = None
@ -40,7 +43,8 @@ class LinkedListStack:
def peek(self) -> int:
"""访问栈顶元素"""
# 判空处理
if not self.__peek: return None
if not self.__peek:
return None
return self.__peek.val
def to_list(self) -> list[int]:
@ -56,10 +60,10 @@ class LinkedListStack:
""" Driver Code """
if __name__ == "__main__":
""" 初始化栈 """
# 初始化栈
stack = LinkedListStack()
""" 元素入栈 """
# 元素入栈
stack.push(1)
stack.push(3)
stack.push(2)
@ -67,19 +71,19 @@ if __name__ == "__main__":
stack.push(4)
print("栈 stack =", stack.to_list())
""" 访问栈顶元素 """
# 访问栈顶元素
peek: int = stack.peek()
print("栈顶元素 peek =", peek)
""" 元素出栈 """
# 元素出栈
pop: int = stack.pop()
print("出栈元素 pop =", pop)
print("出栈后 stack =", stack.to_list())
""" 获取栈的长度 """
# 获取栈的长度
size: int = stack.size()
print("栈的长度 size =", size)
""" 判断是否为空 """
# 判断是否为空
is_empty: bool = stack.is_empty()
print("栈是否为空 =", is_empty)

View File

@ -8,13 +8,12 @@ from collections import deque
""" Driver Code """
if __name__ == "__main__":
""" 初始化队列 """
# 初始化队列
# 在 Python 中,我们一般将双向队列类 deque 看作队列使用
# 虽然 queue.Queue() 是纯正的队列类,但不太好用
que: deque[int] = deque()
""" 元素入队 """
# 元素入队
que.append(1)
que.append(3)
que.append(2)
@ -22,19 +21,19 @@ if __name__ == "__main__":
que.append(4)
print("队列 que =", que)
""" 访问队首元素 """
# 访问队首元素
front: int = que[0]
print("队首元素 front =", front)
""" 元素出队 """
# 元素出队
pop: int = que.popleft()
print("出队元素 pop =", pop)
print("出队后 que =", que)
""" 获取队列的长度 """
# 获取队列的长度
size: int = len(que)
print("队列长度 size =", size)
""" 判断队列是否为空 """
# 判断队列是否为空
is_empty: bool = len(que) == 0
print("队列是否为空 =", is_empty)

View File

@ -6,11 +6,11 @@ Author: Peng Chen (pengchzn@gmail.com)
""" Driver Code """
if __name__ == "__main__":
""" 初始化栈 """
# 初始化栈
# Python 没有内置的栈类,可以把 list 当作栈来使用
stack: list[int] = []
""" 元素入栈 """
# 元素入栈
stack.append(1)
stack.append(3)
stack.append(2)
@ -18,19 +18,19 @@ if __name__ == "__main__":
stack.append(4)
print("栈 stack =", stack)
""" 访问栈顶元素 """
# 访问栈顶元素
peek: int = stack[-1]
print("栈顶元素 peek =", peek)
""" 元素出栈 """
# 元素出栈
pop: int = stack.pop()
print("出栈元素 pop =", pop)
print("出栈后 stack =", stack)
""" 获取栈的长度 """
# 获取栈的长度
size: int = len(stack)
print("栈的长度 size =", size)
""" 判断是否为空 """
# 判断是否为空
is_empty: bool = len(stack) == 0
print("栈是否为空 =", is_empty)

View File

@ -5,11 +5,14 @@ Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
class AVLTree:
"""AVL 树"""
def __init__(self, root: TreeNode | None = None):
"""构造方法"""
self.__root = root
@ -172,6 +175,7 @@ class AVLTree:
""" Driver Code """
if __name__ == "__main__":
def test_insert(tree: AVLTree, val: int):
tree.insert(val)
print("\n插入节点 {}AVL 树为".format(val))

View File

@ -5,18 +5,22 @@ Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
class BinarySearchTree:
"""二叉搜索树"""
def __init__(self, nums: list[int]) -> None:
"""构造方法"""
nums.sort()
self.__root = self.build_tree(nums, 0, len(nums) - 1)
def build_tree(self, nums: list[int], start_index: int, end_index: int) -> TreeNode | None:
def build_tree(
self, nums: list[int], start_index: int, end_index: int
) -> TreeNode | None:
"""构建二叉搜索树"""
if start_index > end_index:
return None
@ -25,8 +29,12 @@ class BinarySearchTree:
mid: int = (start_index + end_index) // 2
root = TreeNode(nums[mid])
# 递归建立左子树和右子树
root.left = self.build_tree(nums=nums, start_index=start_index, end_index=mid - 1)
root.right = self.build_tree(nums=nums, start_index=mid + 1, end_index=end_index)
root.left = self.build_tree(
nums=nums, start_index=start_index, end_index=mid - 1
)
root.right = self.build_tree(
nums=nums, start_index=mid + 1, end_index=end_index
)
return root
@property

View File

@ -12,7 +12,7 @@ from modules import *
""" Driver Code """
if __name__ == "__main__":
""" 初始化二叉树 """
# 初始化二叉树
# 初始化节点
n1 = TreeNode(val=1)
n2 = TreeNode(val=2)
@ -27,7 +27,7 @@ if __name__ == "__main__":
print("\n初始化二叉树\n")
print_tree(n1)
""" 插入与删除节点 """
# 插入与删除节点
P = TreeNode(0)
# 在 n1 -> n2 中间插入节点 P
n1.left = P

View File

@ -5,10 +5,12 @@ Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
from collections import deque
def level_order(root: TreeNode | None) -> list[int]:
"""层序遍历"""
# 初始化队列,加入根节点

View File

@ -5,9 +5,11 @@ Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
def pre_order(root: TreeNode | None) -> None:
"""前序遍历"""
if root is None:
@ -17,6 +19,7 @@ def pre_order(root: TreeNode | None) -> None:
pre_order(root=root.left)
pre_order(root=root.right)
def in_order(root: TreeNode | None) -> None:
"""中序遍历"""
if root is None:
@ -26,6 +29,7 @@ def in_order(root: TreeNode | None) -> None:
res.append(root.val)
in_order(root=root.right)
def post_order(root: TreeNode | None) -> None:
"""后序遍历"""
if root is None:

View File

@ -1,8 +1,20 @@
# Follow the PEP 585 Type Hinting Generics In Standard Collections
# https://peps.python.org/pep-0585/
from __future__ import annotations
# Import common libs here to simplify the codes by `from module import *`
from .linked_list import ListNode, list_to_linked_list, linked_list_to_list, get_list_node
from .linked_list import (
ListNode,
list_to_linked_list,
linked_list_to_list,
get_list_node,
)
from .binary_tree import TreeNode, list_to_tree, tree_to_list, get_tree_node
from .vertex import Vertex, vals_to_vets, vets_to_vals
from .print_util import print_matrix, print_linked_list, print_tree, print_dict, print_heap
from .print_util import (
print_matrix,
print_linked_list,
print_tree,
print_dict,
print_heap,
)

View File

@ -6,14 +6,17 @@ Author: Krahets (krahets@163.com)
from collections import deque
class TreeNode:
"""Definition for a binary tree node"""
def __init__(self, val: int = 0):
self.val: int = val # 节点值
self.height: int = 0 # 节点高度
self.left: TreeNode | None = None # 左子节点引用
self.right: TreeNode | None = None # 右子节点引用
def list_to_tree(arr: list[int]) -> TreeNode | None:
"""Generate a binary tree with a list"""
if not arr:
@ -25,21 +28,25 @@ def list_to_tree(arr: list[int]) -> TreeNode | None:
while queue:
node: TreeNode = queue.popleft()
i += 1
if i >= len(arr): break
if i >= len(arr):
break
if arr[i] != None:
node.left = TreeNode(arr[i])
queue.append(node.left)
i += 1
if i >= len(arr): break
if i >= len(arr):
break
if arr[i] != None:
node.right = TreeNode(arr[i])
queue.append(node.right)
return root
def tree_to_list(root: TreeNode | None) -> list[int]:
"""Serialize a tree into an array"""
if not root: return []
if not root:
return []
queue: deque[TreeNode] = deque()
queue.append(root)
res: list[int] = []
@ -49,9 +56,11 @@ def tree_to_list(root: TreeNode | None) -> list[int]:
res.append(node.val)
queue.append(node.left)
queue.append(node.right)
else: res.append(None)
else:
res.append(None)
return res
def get_tree_node(root: TreeNode | None, val: int) -> TreeNode | None:
"""Get a tree node with specific value in a binary tree"""
if not root:

View File

@ -4,12 +4,15 @@ Created Time: 2021-12-11
Author: Krahets (krahets@163.com)
"""
class ListNode:
"""Definition for a singly-linked list node"""
def __init__(self, val: int):
self.val: int = val # 节点值
self.next: ListNode | None = None # 后继节点引用
def list_to_linked_list(arr: list[int]) -> ListNode | None:
"""Generate a linked list with a list"""
dum = head = ListNode(0)
@ -19,6 +22,7 @@ def list_to_linked_list(arr: list[int]) -> ListNode | None:
head = head.next
return dum.next
def linked_list_to_list(head: ListNode | None) -> list[int]:
"""Serialize a linked list into an array"""
arr: list[int] = []
@ -27,6 +31,7 @@ def linked_list_to_list(head: ListNode | None) -> list[int]:
head = head.next
return arr
def get_list_node(head: ListNode | None, val: int) -> ListNode | None:
"""Get a list node with specific value from a linked list"""
while head and head.val != val:

View File

@ -7,31 +7,38 @@ Author: Krahets (krahets@163.com), msk397 (machangxinq@gmail.com)
from .binary_tree import TreeNode, list_to_tree
from .linked_list import ListNode, linked_list_to_list
def print_matrix(mat: list[list[int]]) -> None:
"""Print a matrix"""
s: list[str] = []
for arr in mat:
s.append(' ' + str(arr))
s.append(" " + str(arr))
print("[\n" + ",\n".join(s) + "\n]")
print('[\n' + ',\n'.join(s) + '\n]')
def print_linked_list(head: ListNode | None) -> None:
"""Print a linked list"""
arr: list[int] = linked_list_to_list(head)
print(' -> '.join([str(a) for a in arr]))
print(" -> ".join([str(a) for a in arr]))
class Trunk:
def __init__(self, prev, string: str | None = None) -> None:
self.prev = prev
self.str = string
def show_trunks(p: Trunk | None) -> None:
if p is None:
return
show_trunks(p.prev)
print(p.str, end='')
print(p.str, end="")
def print_tree(root: TreeNode | None, prev: Trunk | None = None, is_left: bool = False) -> None:
def print_tree(
root: TreeNode | None, prev: Trunk | None = None, is_left: bool = False
) -> None:
"""
Print a binary tree
This tree printer is borrowed from TECHIE DELIGHT
@ -40,30 +47,32 @@ def print_tree(root: TreeNode | None, prev: Trunk | None = None, is_left: bool =
if root is None:
return
prev_str: str = ' '
prev_str: str = " "
trunk = Trunk(prev, prev_str)
print_tree(root.right, trunk, True)
if prev is None:
trunk.str = '———'
trunk.str = "———"
elif is_left:
trunk.str = '/———'
prev_str = ' |'
trunk.str = "/———"
prev_str = " |"
else:
trunk.str = '\———'
trunk.str = "\———"
prev.str = prev_str
show_trunks(trunk)
print(' ' + str(root.val))
print(" " + str(root.val))
if prev:
prev.str = prev_str
trunk.str = ' |'
trunk.str = " |"
print_tree(root.left, trunk, False)
def print_dict(mapp: dict) -> None:
"""Print a dict"""
for key, value in mapp.items():
print(key, '->', value)
print(key, "->", value)
def print_heap(heap: list[int]) -> None:
"""Print a heap both in array and tree representations"""

View File

@ -2,15 +2,19 @@
# Created Time: 2023-02-23
# Author: Krahets (krahets@163.com)
class Vertex:
"""顶点类"""
def __init__(self, val: int) -> None:
self.val = val
def vals_to_vets(vals: list[int]) -> list['Vertex']:
def vals_to_vets(vals: list[int]) -> list["Vertex"]:
"""输入值列表 vals ,返回顶点列表 vets"""
return [Vertex(val) for val in vals]
def vets_to_vals(vets: list['Vertex']) -> list[int]:
def vets_to_vals(vets: list["Vertex"]) -> list[int]:
"""输入顶点列表 vets ,返回值列表 vals"""
return [vet.val for vet in vets]