Publish the C codes to the docs. (#469)

This commit is contained in:
Yudong Jin 2023-04-18 20:21:31 +08:00 committed by GitHub
parent 6723cdbc7e
commit dbc4906582
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
29 changed files with 288 additions and 189 deletions

View File

@ -42,6 +42,7 @@ void insert(int *nums, int size, int num, int index) {
}
/* 删除索引 index 处元素 */
// 注意stdio.h 占用了 remove 关键词
void removeItem(int *nums, int size, int index) {
// 把索引 index 之后的所有元素向前移动一位
for (int i = index; i < size - 1; i++) {

View File

@ -14,8 +14,7 @@ void insert(ListNode *n0, ListNode *P) {
}
/* 删除链表的节点 n0 之后的首个节点 */
// 由于引入了 stdio.h ,此处无法使用 remove 关键词
// 详见 https://github.com/krahets/hello-algo/pull/244#discussion_r1067863888
// 注意stdio.h 占用了 remove 关键词
void removeNode(ListNode *n0) {
if (!n0->next)
return;

View File

@ -6,7 +6,7 @@
#include "../include/include.h"
// 用数组实现 list
/* 列表类简易实现 */
struct myList {
int *nums; // 数组(存储列表元素)
int capacity; // 列表容量
@ -16,10 +16,9 @@ struct myList {
typedef struct myList myList;
/* 前置声明 */
void extendCapacity(myList *list);
/* 构造方法 */
/* 构造函数 */
myList *newMyList() {
myList *list = malloc(sizeof(myList));
list->capacity = 10;
@ -29,7 +28,7 @@ myList *newMyList() {
return list;
}
/* 析构方法 */
/* 析构函数 */
void delMyList(myList *list) {
free(list->nums);
free(list);
@ -77,8 +76,7 @@ void insert(myList *list, int index, int num) {
}
/* 删除元素 */
// 由于引入了 stdio.h ,此处无法使用 remove 关键词
// 详见 https://github.com/krahets/hello-algo/pull/244#discussion_r1067863888
// 注意stdio.h 占用了 remove 关键词
int removeNum(myList *list, int index) {
assert(index >= 0 && index < size(list));
int num = list->nums[index];

View File

@ -29,10 +29,12 @@ void constant(int n) {
}
}
typedef struct {
/* 哈希表 */
typedef struct hashTable {
int key;
char val[10];
UT_hash_handle hh; // 借助 uthash 实现的哈希表
int val;
// 借助 LetCode 上常用的哈希表
UT_hash_handle hh;
} hashTable;
/* 线性阶 */
@ -58,7 +60,7 @@ void linear(int n) {
for (int i = 0; i < n; i++) {
hashTable *tmp = malloc(sizeof(hashTable));
tmp->key = i;
sprintf(tmp->val, "%d", i);
tmp->val = i;
HASH_ADD_INT(h, key, tmp);
}

View File

@ -9,18 +9,20 @@
#define MAX_SIZE 5000
/* 大顶堆 */
typedef struct maxHeap {
struct maxHeap {
// size 代表的是实际元素的个数
int size;
// 使用预先分配内存的数组,避免扩容
int data[MAX_SIZE];
} maxHeap;
};
typedef struct maxHeap maxHeap;
void siftDown(maxHeap *h, int i);
void siftUp(maxHeap *h, int i);
/* 构造方法,根据切片建堆 */
/* 构造函数,根据切片建堆 */
maxHeap *newMaxHeap(int nums[], int size) {
// 所有元素入堆
maxHeap *h = (maxHeap *)malloc(sizeof(maxHeap));

View File

@ -15,7 +15,7 @@ void swap(int nums[], int i, int j) {
/* 快速排序类 */
// 快速排序类-哨兵划分
int quickSortPartition(int nums[], int left, int right) {
int partition(int nums[], int left, int right) {
// 以 nums[left] 作为基准数
int i = left, j = right;
while (i < j) {
@ -43,7 +43,7 @@ void quickSort(int nums[], int left, int right) {
return;
}
// 哨兵划分
int pivot = quickSortPartition(nums, left, right);
int pivot = partition(nums, left, right);
// 递归左子数组、右子数组
quickSort(nums, left, pivot - 1);
quickSort(nums, pivot + 1, right);
@ -63,7 +63,7 @@ int medianThree(int nums[], int left, int mid, int right) {
}
// 哨兵划分(三数取中值)
int quickSortMedianPartition(int nums[], int left, int right) {
int partitionMedian(int nums[], int left, int right) {
// 选取三个候选元素的中位数
int med = medianThree(nums, left, (left + right) / 2, right);
// 将中位数交换至数组最左端
@ -87,34 +87,19 @@ void quickSortMedian(int nums[], int left, int right) {
if (left >= right)
return;
// 哨兵划分
int pivot = quickSortMedianPartition(nums, left, right);
int pivot = partitionMedian(nums, left, right);
// 递归左子数组、右子数组
quickSortMedian(nums, left, pivot - 1);
quickSortMedian(nums, pivot + 1, right);
}
/* 快速排序类(尾递归优化) */
/* 尾递归优化-哨兵划分 */
int quickSortTailCallPartition(int nums[], int left, int right) {
// 以 nums[left] 作为基准数
int i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left])
j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left])
i++; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
// 快速排序(尾递归优化)
void quickSortTailCall(int nums[], int left, int right) {
// 子数组长度为 1 时终止
while (left < right) {
// 哨兵划分操作
int pivot = quickSortTailCallPartition(nums, left, right);
int pivot = partition(nums, left, right);
// 对两个子数组中较短的那个执行快排
if (pivot - left < right - pivot) {
quickSortTailCall(nums, left, pivot - 1); // 递归排序左子数组

View File

@ -6,19 +6,19 @@
#include "../include/include.h"
/* 基于环形数组形成的双向队列 */
struct ArrayDeque {
/* 基于环形数组实现的双向队列 */
struct arrayDeque {
int *nums; // 用于存储队列元素的数组
int front; // 队首指针,指向队首元素
int queSize; // 尾指针,指向队尾 + 1
int queCapacity; // 队列容量
};
typedef struct ArrayDeque ArrayDeque;
typedef struct arrayDeque arrayDeque;
/* 构造方法 */
ArrayDeque *newArrayDeque(int capacity) {
ArrayDeque *deque = (ArrayDeque *)malloc(sizeof(ArrayDeque));
/* 构造函数 */
arrayDeque *newArrayDeque(int capacity) {
arrayDeque *deque = (arrayDeque *)malloc(sizeof(arrayDeque));
// 初始化数组
deque->queCapacity = capacity;
deque->nums = (int *)malloc(sizeof(int) * deque->queCapacity);
@ -26,28 +26,28 @@ ArrayDeque *newArrayDeque(int capacity) {
return deque;
}
/* 析构方法 */
void delArrayDeque(ArrayDeque *deque) {
/* 析构函数 */
void delArrayDeque(arrayDeque *deque) {
free(deque->nums);
deque->queCapacity = 0;
}
/* 获取双向队列的容量 */
int capacity(ArrayDeque *deque) {
int capacity(arrayDeque *deque) {
return deque->queCapacity;
}
/* 获取双向队列的长度 */
int size(ArrayDeque *deque) {
int size(arrayDeque *deque) {
return deque->queSize;
}
/* 判断双向队列是否为空 */
bool empty(ArrayDeque *deque) {
bool empty(arrayDeque *deque) {
return deque->queSize == 0;
}
int dequeIndex(ArrayDeque *deque, int i) {
int dequeIndex(arrayDeque *deque, int i) {
// 通过取余操作实现数组首尾相连
// 当 i 越过数组尾部时,回到头部
// 当 i 越过数组头部后,回到尾部
@ -55,7 +55,7 @@ int dequeIndex(ArrayDeque *deque, int i) {
}
/* 队首入队 */
void pushFirst(ArrayDeque *deque, int num) {
void pushFirst(arrayDeque *deque, int num) {
if (deque->queSize == capacity(deque)) {
printf("双向队列已满\r\n");
return;
@ -69,7 +69,7 @@ void pushFirst(ArrayDeque *deque, int num) {
}
/* 队尾入队 */
void pushLast(ArrayDeque *deque, int num) {
void pushLast(arrayDeque *deque, int num) {
if (deque->queSize == capacity(deque)) {
printf("双向队列已满\r\n");
return;
@ -82,14 +82,14 @@ void pushLast(ArrayDeque *deque, int num) {
}
/* 访问队首元素 */
int peekFirst(ArrayDeque *deque) {
int peekFirst(arrayDeque *deque) {
// 访问异常:双向队列为空
assert(empty(deque) == 0);
return deque->nums[deque->front];
}
/* 访问队尾元素 */
int peekLast(ArrayDeque *deque) {
int peekLast(arrayDeque *deque) {
// 访问异常:双向队列为空
assert(empty(deque) == 0);
int last = dequeIndex(deque, deque->front + deque->queSize - 1);
@ -97,7 +97,7 @@ int peekLast(ArrayDeque *deque) {
}
/* 队首出队 */
int popFirst(ArrayDeque *deque) {
int popFirst(arrayDeque *deque) {
int num = peekFirst(deque);
// 队首指针向后移动一位
deque->front = dequeIndex(deque, deque->front + 1);
@ -106,14 +106,14 @@ int popFirst(ArrayDeque *deque) {
}
/* 队尾出队 */
int popLast(ArrayDeque *deque) {
int popLast(arrayDeque *deque) {
int num = peekLast(deque);
deque->queSize--;
return num;
}
/* 打印基于环形数组形成的队列 */
void printArrayDeque(ArrayDeque *deque) {
/* 打印队列 */
void printArrayDeque(arrayDeque *deque) {
int arr[deque->queSize];
// 拷贝
for (int i = 0, j = deque->front; i < deque->queSize; i++, j++) {
@ -126,7 +126,7 @@ void printArrayDeque(ArrayDeque *deque) {
int main() {
/* 初始化队列 */
int capacity = 10;
ArrayDeque *deque = newArrayDeque(capacity);
arrayDeque *deque = newArrayDeque(capacity);
pushLast(deque, 3);
pushLast(deque, 2);
pushLast(deque, 5);

View File

@ -6,19 +6,19 @@
#include "../include/include.h"
/* 基于环形数组形成的队列 */
struct ArrayQueue {
/* 基于环形数组实现的队列 */
struct arrayQueue {
int *nums; // 用于存储队列元素的数组
int front; // 队首指针,指向队首元素
int queSize; // 尾指针,指向队尾 + 1
int queCapacity; // 队列容量
};
typedef struct ArrayQueue ArrayQueue;
typedef struct arrayQueue arrayQueue;
/* 构造方法 */
ArrayQueue *newArrayQueue(int capacity) {
ArrayQueue *queue = (ArrayQueue *)malloc(sizeof(ArrayQueue));
/* 构造函数 */
arrayQueue *newArrayQueue(int capacity) {
arrayQueue *queue = (arrayQueue *)malloc(sizeof(arrayQueue));
// 初始化数组
queue->queCapacity = capacity;
queue->nums = (int *)malloc(sizeof(int) * queue->queCapacity);
@ -26,35 +26,35 @@ ArrayQueue *newArrayQueue(int capacity) {
return queue;
}
/* 析构方法 */
void delArrayQueue(ArrayQueue *queue) {
/* 析构函数 */
void delArrayQueue(arrayQueue *queue) {
free(queue->nums);
queue->queCapacity = 0;
}
/* 获取队列的容量 */
int capacity(ArrayQueue *queue) {
int capacity(arrayQueue *queue) {
return queue->queCapacity;
}
/* 获取队列的长度 */
int size(ArrayQueue *queue) {
int size(arrayQueue *queue) {
return queue->queSize;
}
/* 判断队列是否为空 */
bool empty(ArrayQueue *queue) {
bool empty(arrayQueue *queue) {
return queue->queSize == 0;
}
/* 访问队首元素 */
int peek(ArrayQueue *queue) {
int peek(arrayQueue *queue) {
assert(size(queue) != 0);
return queue->nums[queue->front];
}
/* 入队 */
void push(ArrayQueue *queue, int num) {
void push(arrayQueue *queue, int num) {
if (size(queue) == capacity(queue)) {
printf("队列已满\r\n");
return;
@ -68,15 +68,15 @@ void push(ArrayQueue *queue, int num) {
}
/* 出队 */
void pop(ArrayQueue *queue) {
void pop(arrayQueue *queue) {
int num = peek(queue);
// 队首指针向后移动一位,若越过尾部则返回到数组头部
queue->front = (queue->front + 1) % queue->queCapacity;
queue->queSize--;
}
/* 打印基于环形数组形成的队列 */
void printArrayQueue(ArrayQueue *queue) {
/* 打印队列 */
void printArrayQueue(arrayQueue *queue) {
int arr[queue->queSize];
// 拷贝
for (int i = 0, j = queue->front; i < queue->queSize; i++, j++) {
@ -89,7 +89,7 @@ void printArrayQueue(ArrayQueue *queue) {
int main() {
/* 初始化队列 */
int capacity = 10;
ArrayQueue *queue = newArrayQueue(capacity);
arrayQueue *queue = newArrayQueue(capacity);
/* 元素入队 */
push(queue, 1);

View File

@ -16,6 +16,7 @@ struct arrayStack {
typedef struct arrayStack arrayStack;
/* 构造函数 */
arrayStack *newArrayStack() {
arrayStack *s = malloc(sizeof(arrayStack));
// 初始化一个大容量,避免扩容

View File

@ -7,50 +7,50 @@
#include "../include/include.h"
/* 双向链表节点 */
struct DoublyListNode {
struct doublyListNode {
int val; // 节点值
struct DoublyListNode *next; // 后继节点
struct DoublyListNode *prev; // 前驱节点
struct doublyListNode *next; // 后继节点
struct doublyListNode *prev; // 前驱节点
};
typedef struct DoublyListNode DoublyListNode;
typedef struct doublyListNode doublyListNode;
/* 双向链表节点构造方法 */
DoublyListNode *newDoublyListNode(int num) {
DoublyListNode *new = (DoublyListNode *)malloc(sizeof(DoublyListNode));
/* 构造函数 */
doublyListNode *newDoublyListNode(int num) {
doublyListNode *new = (doublyListNode *)malloc(sizeof(doublyListNode));
new->val = num;
new->next = NULL;
new->prev = NULL;
return new;
}
/* 双向链表节点析构方法 */
void delDoublyListNode(DoublyListNode *node) {
/* 析构函数 */
void delDoublyListNode(doublyListNode *node) {
free(node);
}
/* 基于双向链表实现的双向队列 */
struct LinkedListDeque {
DoublyListNode *front, *rear; // 头节点 front ,尾节点 rear
struct linkedListDeque {
doublyListNode *front, *rear; // 头节点 front ,尾节点 rear
int queSize; // 双向队列的长度
};
typedef struct LinkedListDeque LinkedListDeque;
typedef struct linkedListDeque linkedListDeque;
/* 构造方法 */
LinkedListDeque *newLinkedListDeque() {
LinkedListDeque *deque = (LinkedListDeque *)malloc(sizeof(LinkedListDeque));
/* 构造j */
linkedListDeque *newLinkedListDeque() {
linkedListDeque *deque = (linkedListDeque *)malloc(sizeof(linkedListDeque));
deque->front = NULL;
deque->rear = NULL;
deque->queSize = 0;
return deque;
}
/* 析构方法 */
void delLinkedListdeque(LinkedListDeque *deque) {
/* 析构函数 */
void delLinkedListdeque(linkedListDeque *deque) {
// 释放所有节点
for (int i = 0; i < deque->queSize && deque->front != NULL; i++) {
DoublyListNode *tmp = deque->front;
doublyListNode *tmp = deque->front;
deque->front = deque->front->next;
free(tmp);
}
@ -59,18 +59,18 @@ void delLinkedListdeque(LinkedListDeque *deque) {
}
/* 获取队列的长度 */
int size(LinkedListDeque *deque) {
int size(linkedListDeque *deque) {
return deque->queSize;
}
/* 判断队列是否为空 */
bool empty(LinkedListDeque *deque) {
bool empty(linkedListDeque *deque) {
return (size(deque) == 0);
}
/* 入队 */
void push(LinkedListDeque *deque, int num, bool isFront) {
DoublyListNode *node = newDoublyListNode(num);
void push(linkedListDeque *deque, int num, bool isFront) {
doublyListNode *node = newDoublyListNode(num);
// 若链表为空,则令 front, rear 都指向node
if (empty(deque)) {
deque->front = deque->rear = node;
@ -93,36 +93,36 @@ void push(LinkedListDeque *deque, int num, bool isFront) {
}
/* 队首入队 */
void pushFirst(LinkedListDeque *deque, int num) {
void pushFirst(linkedListDeque *deque, int num) {
push(deque, num, true);
}
/* 队尾入队 */
void pushLast(LinkedListDeque *deque, int num) {
void pushLast(linkedListDeque *deque, int num) {
push(deque, num, false);
}
/* 访问队首元素 */
int peekFirst(LinkedListDeque *deque) {
int peekFirst(linkedListDeque *deque) {
assert(size(deque) && deque->front);
return deque->front->val;
}
/* 访问队尾元素 */
int peekLast(LinkedListDeque *deque) {
int peekLast(linkedListDeque *deque) {
assert(size(deque) && deque->rear);
return deque->rear->val;
}
/* 出队 */
int pop(LinkedListDeque *deque, bool isFront) {
int pop(linkedListDeque *deque, bool isFront) {
if (empty(deque))
return -1;
int val;
// 队首出队操作
if (isFront) {
val = peekFirst(deque); // 暂存头节点值
DoublyListNode *fNext = deque->front->next;
doublyListNode *fNext = deque->front->next;
if (fNext) {
fNext->prev = NULL;
deque->front->next = NULL;
@ -133,7 +133,7 @@ int pop(LinkedListDeque *deque, bool isFront) {
// 队尾出队操作
else {
val = peekLast(deque); // 暂存尾节点值
DoublyListNode *rPrev = deque->rear->prev;
doublyListNode *rPrev = deque->rear->prev;
if (rPrev) {
rPrev->next = NULL;
deque->rear->prev = NULL;
@ -146,21 +146,21 @@ int pop(LinkedListDeque *deque, bool isFront) {
}
/* 队首出队 */
int popFirst(LinkedListDeque *deque) {
int popFirst(linkedListDeque *deque) {
return pop(deque, true);
}
/* 队尾出队 */
int popLast(LinkedListDeque *deque) {
int popLast(linkedListDeque *deque) {
return pop(deque, false);
}
/* 打印队列 */
void printLinkedListDeque(LinkedListDeque *deque) {
void printLinkedListDeque(linkedListDeque *deque) {
int arr[deque->queSize];
// 拷贝链表中的数据到数组
int i;
DoublyListNode *node;
doublyListNode *node;
for (i = 0, node = deque->front; i < deque->queSize; i++) {
arr[i] = node->val;
node = node->next;
@ -171,7 +171,7 @@ void printLinkedListDeque(LinkedListDeque *deque) {
/* Driver Code */
int main() {
/* 初始化双向队列 */
LinkedListDeque *deque = newLinkedListDeque();
linkedListDeque *deque = newLinkedListDeque();
pushLast(deque, 3);
pushLast(deque, 2);
pushLast(deque, 5);

View File

@ -7,24 +7,24 @@
#include "../include/include.h"
/* 基于链表实现的队列 */
struct LinkedListQueue {
struct linkedListQueue {
ListNode *front, *rear;
int queSize;
};
typedef struct LinkedListQueue LinkedListQueue;
typedef struct linkedListQueue linkedListQueue;
/* 构造方法 */
LinkedListQueue *newLinkedListQueue() {
LinkedListQueue *queue = (LinkedListQueue *)malloc(sizeof(LinkedListQueue));
/* 构造函数 */
linkedListQueue *newLinkedListQueue() {
linkedListQueue *queue = (linkedListQueue *)malloc(sizeof(linkedListQueue));
queue->front = NULL;
queue->rear = NULL;
queue->queSize = 0;
return queue;
}
/* 析构方法 */
void delLinkedListQueue(LinkedListQueue *queue) {
/* 析构函数 */
void delLinkedListQueue(linkedListQueue *queue) {
// 释放所有节点
for (int i = 0; i < queue->queSize && queue->front != NULL; i++) {
ListNode *tmp = queue->front;
@ -36,17 +36,17 @@ void delLinkedListQueue(LinkedListQueue *queue) {
}
/* 获取队列的长度 */
int size(LinkedListQueue *queue) {
int size(linkedListQueue *queue) {
return queue->queSize;
}
/* 判断队列是否为空 */
bool empty(LinkedListQueue *queue) {
bool empty(linkedListQueue *queue) {
return (size(queue) == 0);
}
/* 入队 */
void push(LinkedListQueue *queue, int num) {
void push(linkedListQueue *queue, int num) {
// 尾节点处添加 node
ListNode *node = newListNode(num);
// 如果队列为空,则令头、尾节点都指向该节点
@ -63,13 +63,13 @@ void push(LinkedListQueue *queue, int num) {
}
/* 访问队首元素 */
int peek(LinkedListQueue *queue) {
int peek(linkedListQueue *queue) {
assert(size(queue) && queue->front);
return queue->front->val;
}
/* 出队 */
void pop(LinkedListQueue *queue) {
void pop(linkedListQueue *queue) {
int num = peek(queue);
ListNode *tmp = queue->front;
queue->front = queue->front->next;
@ -78,7 +78,7 @@ void pop(LinkedListQueue *queue) {
}
/* 打印队列 */
void printLinkedListQueue(LinkedListQueue *queue) {
void printLinkedListQueue(linkedListQueue *queue) {
int arr[queue->queSize];
// 拷贝链表中的数据到数组
int i;
@ -93,7 +93,7 @@ void printLinkedListQueue(LinkedListQueue *queue) {
/* Driver Code */
int main() {
/* 初始化队列 */
LinkedListQueue *queue = newLinkedListQueue();
linkedListQueue *queue = newLinkedListQueue();
/* 元素入队 */
push(queue, 1);

View File

@ -14,7 +14,7 @@ struct linkedListStack {
typedef struct linkedListStack linkedListStack;
/* 构造方法 */
/* 构造函数 */
linkedListStack *newLinkedListStack() {
linkedListStack *s = malloc(sizeof(linkedListStack));
s->top = NULL;
@ -22,7 +22,7 @@ linkedListStack *newLinkedListStack() {
return s;
}
/* 析构方法 */
/* 析构函数 */
void delLinkedListStack(linkedListStack *s) {
while (s->top) {
ListNode *n = s->top->next;
@ -80,7 +80,6 @@ int pop(linkedListStack *s) {
/* Driver Code */
int main() {
/* 初始化栈 */
// 构造方法
linkedListStack *stack = newLinkedListStack();
/* 元素入栈 */

View File

@ -7,15 +7,15 @@
#include "../include/include.h"
/* AVL Tree */
struct avlTree {
struct aVLTree {
TreeNode *root;
};
typedef struct avlTree avlTree;
typedef struct aVLTree aVLTree;
/* 构建 AVL 树 */
avlTree *newAVLTree() {
avlTree *tree = (avlTree *)malloc(sizeof(avlTree));
aVLTree *newAVLTree() {
aVLTree *tree = (aVLTree *)malloc(sizeof(aVLTree));
tree->root = NULL;
return tree;
}
@ -134,7 +134,7 @@ TreeNode *insertHelper(TreeNode *node, int val) {
}
/* 插入节点 */
void insert(avlTree *tree, int val) {
void insert(aVLTree *tree, int val) {
tree->root = insertHelper(tree->root, val);
}
@ -183,12 +183,12 @@ TreeNode *removeHelper(TreeNode *node, int val) {
/* 删除节点 */
// 由于引入了 stdio.h ,此处无法使用 remove 关键词
void removeNode(avlTree *tree, int val) {
void removeNode(aVLTree *tree, int val) {
TreeNode *root = removeHelper(tree->root, val);
}
/* 查找节点 */
TreeNode *search(avlTree *tree, int val) {
TreeNode *search(aVLTree *tree, int val) {
TreeNode *cur = tree->root;
// 循环查找,越过叶节点后跳出
while (cur != NULL) {
@ -207,13 +207,13 @@ TreeNode *search(avlTree *tree, int val) {
return cur;
}
void testInsert(avlTree *tree, int val) {
void testInsert(aVLTree *tree, int val) {
insert(tree, val);
printf("\n插入节点 %d 后AVL 树为 \n", val);
printTree(tree->root);
}
void testRemove(avlTree *tree, int val) {
void testRemove(aVLTree *tree, int val) {
removeNode(tree, val);
printf("\n删除节点 %d 后AVL 树为 \n", val);
printTree(tree->root);
@ -222,7 +222,7 @@ void testRemove(avlTree *tree, int val) {
/* Driver Code */
int main() {
/* 初始化空 AVL 树 */
avlTree *tree = (avlTree *)newAVLTree();
aVLTree *tree = (aVLTree *)newAVLTree();
/* 插入节点 */
// 请关注插入节点后AVL 树是如何保持平衡的
testInsert(tree, 1);

View File

@ -15,11 +15,12 @@ extern "C" {
#define MAX_NODE_SIZE 5000
/* 二叉树节点结构体 */
struct TreeNode {
int val;
int height;
struct TreeNode *left;
struct TreeNode *right;
int val; // 节点值
int height; // 节点高度
struct TreeNode *left; // 左子节点指针
struct TreeNode *right; // 右子节点指针
};
typedef struct TreeNode TreeNode;
@ -60,7 +61,7 @@ TreeNode *arrToTree(const int *arr, size_t size) {
node = queue[front++];
index++;
if (index < size) {
// represent null with INT_MAX
// represent null with INT_MAX
if (arr[index] != INT_MAX) {
node->left = newTreeNode(arr[index]);
queue[rear++] = node->left;

View File

@ -95,10 +95,9 @@
struct ListNode *next; // 指向下一节点的指针(引用)
};
// typedef 作用是为一种数据类型定义一个新名字
typedef struct ListNode ListNode;
/* 构造函数,初始化一个新节点 */
/* 构造函数 */
ListNode *newListNode(int val) {
ListNode *node, *next;
node = (ListNode *) malloc(sizeof(ListNode));
@ -379,7 +378,7 @@
=== "C"
```c title="linked_list.c"
[class]{}-[func]{insertNode}
[class]{}-[func]{insert}
```
=== "C#"
@ -573,7 +572,7 @@
=== "C"
```c title="linked_list.c"
[class]{}-[func]{findNode}
[class]{}-[func]{find}
```
=== "C#"
@ -692,7 +691,24 @@
=== "C"
```c title=""
/* 双向链表节点结构体 */
struct ListNode {
int val; // 节点值
struct ListNode *next; // 指向后继节点的指针(引用)
struct ListNode *prev; // 指向前驱节点的指针(引用)
};
typedef struct ListNode ListNode;
/* 构造函数 */
ListNode *newListNode(int val) {
ListNode *node, *next;
node = (ListNode *) malloc(sizeof(ListNode));
node->val = val;
node->next = NULL;
node->prev = NULL;
return node;
}
```
=== "C#"

View File

@ -73,7 +73,7 @@
=== "C"
```c title="list.c"
// C 未提供内置动态数组
```
=== "C#"
@ -171,7 +171,7 @@
=== "C"
```c title="list.c"
// C 未提供内置动态数组
```
=== "C#"
@ -329,7 +329,7 @@
=== "C"
```c title="list.c"
// C 未提供内置动态数组
```
=== "C#"
@ -491,7 +491,7 @@
=== "C"
```c title="list.c"
// C 未提供内置动态数组
```
=== "C#"
@ -599,7 +599,7 @@
=== "C"
```c title="list.c"
// C 未提供内置动态数组
```
=== "C#"
@ -675,7 +675,7 @@
=== "C"
```c title="list.c"
// C 未提供内置动态数组
```
=== "C#"

View File

@ -157,7 +157,10 @@ $$
=== "C"
```c title=""
// (i + j) 有可能超出 int 的取值范围
int m = (i + j) / 2;
// 更换为此写法则不会越界
int m = i + (j - i) / 2;
```
=== "C#"

View File

@ -182,7 +182,18 @@
=== "C"
```c title=""
/* 函数 */
int func() {
// do something...
return 0;
}
int algorithm(int n) { // 输入数据
const int a = 0; // 暂存数据(常量)
int b = 0; // 暂存数据(变量)
int c = func(); // 栈帧空间(调用函数)
return a + b + c; // 输出数据
}
```
=== "C#"
@ -329,7 +340,12 @@
=== "C"
```c title=""
void algorithm(int n) {
int a = 0; // O(1)
int b[10000]; // O(1)
if (n > 10)
vector<int> nums(n); // O(n)
}
```
=== "C#"
@ -491,7 +507,21 @@
=== "C"
```c title=""
int func() {
// do something
return 0;
}
/* 循环 O(1) */
void loop(int n) {
for (int i = 0; i < n; i++) {
func();
}
}
/* 递归 O(n) */
void recur(int n) {
if (n == 1) return;
return recur(n - 1);
}
```
=== "C#"
@ -611,7 +641,7 @@ $$
=== "C"
```c title="space_complexity.c"
[class]{}-[func]{spaceConstant}
[class]{}-[func]{constant}
```
=== "C#"
@ -675,7 +705,7 @@ $$
=== "C"
```c title="space_complexity.c"
[class]{}-[func]{spaceLinear}
[class]{}-[func]{linear}
```
=== "C#"
@ -737,7 +767,7 @@ $$
=== "C"
```c title="space_complexity.c"
[class]{}-[func]{spaceLinearRecur}
[class]{}-[func]{linearRecur}
```
=== "C#"
@ -803,7 +833,7 @@ $$
=== "C"
```c title="space_complexity.c"
[class]{}-[func]{spaceQuadratic}
[class]{}-[func]{quadratic}
```
=== "C#"
@ -865,7 +895,7 @@ $$
=== "C"
```c title="space_complexity.c"
[class]{}-[func]{spaceQuadraticRecur}
[class]{}-[func]{quadraticRecur}
```
=== "C#"

View File

@ -168,7 +168,7 @@
=== "C"
```c title="hash_map.c"
// C 未提供内置哈希表
```
=== "C#"
@ -333,7 +333,7 @@
=== "C"
```c title="hash_map.c"
// C 未提供内置哈希表
```
=== "C#"

View File

@ -249,7 +249,7 @@
=== "C"
```c title="heap.c"
// C 未提供内置 Heap 类
```
=== "C#"

View File

@ -102,7 +102,9 @@
=== "C"
```c title="merge_sort.c"
[class]{}-[func]{merge}
[class]{}-[func]{mergeSort}
```
=== "C#"

View File

@ -88,7 +88,7 @@
=== "C"
```c title="quick_sort.c"
[class]{quickSort}-[func]{partition}
[class]{}-[func]{partition}
```
=== "C#"
@ -162,7 +162,7 @@
=== "C"
```c title="quick_sort.c"
[class]{quickSort}-[func]{quickSort}
[class]{}-[func]{quickSort}
```
=== "C#"
@ -262,9 +262,9 @@
=== "C"
```c title="quick_sort.c"
[class]{quickSortMedian}-[func]{medianThree}
[class]{}-[func]{medianThree}
[class]{quickSortMedian}-[func]{partition}
[class]{}-[func]{partitionMedian}
```
=== "C#"
@ -336,7 +336,7 @@
=== "C"
```c title="quick_sort.c"
[class]{quickSortTailCall}-[func]{quickSort}
[class]{}-[func]{quickSortTailCall}
```
=== "C#"

View File

@ -215,7 +215,7 @@
=== "C"
```c title="deque.c"
// C 未提供内置双向队列
```
=== "C#"
@ -361,9 +361,9 @@
=== "C"
```c title="linkedlist_deque.c"
[class]{ListNode}-[func]{}
[class]{doublyListNode}-[func]{}
[class]{LinkedListDeque}-[func]{}
[class]{linkedListDeque}-[func]{}
```
=== "C#"
@ -450,7 +450,7 @@
=== "C"
```c title="array_deque.c"
[class]{ArrayDeque}-[func]{}
[class]{arrayDeque}-[func]{}
```
=== "C#"

View File

@ -189,7 +189,7 @@
=== "C"
```c title="queue.c"
// C 未提供内置队列
```
=== "C#"

View File

@ -188,7 +188,7 @@
=== "C"
```c title="stack.c"
// C 未提供内置栈
```
=== "C#"

View File

@ -34,9 +34,8 @@
```cpp title=""
/* 二叉树的数组表示 */
// 为了符合数据类型为 int ,使用 int 最大值标记空位
// 该方法的使用前提是没有节点的值 = INT_MAX
vector<int> tree = { 1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15 };
// 使用 int 最大值标记空位,因此要求节点值不能为 INT_MAX
vector<int> tree = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};
```
=== "Python"
@ -74,7 +73,9 @@
=== "C"
```c title=""
/* 二叉树的数组表示 */
// 使用 int 最大值标记空位,因此要求节点值不能为 INT_MAX
int tree[] = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};
```
=== "C#"

View File

@ -62,7 +62,7 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "Go"
```go title=""
/* AVL 树节点 */
/* AVL 树节点结构体 */
type TreeNode struct {
Val int // 节点值
Height int // 节点高度
@ -74,6 +74,7 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "JavaScript"
```javascript title=""
/* AVL 树节点类 */
class TreeNode {
val; // 节点值
height; //节点高度
@ -91,6 +92,7 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "TypeScript"
```typescript title=""
/* AVL 树节点类 */
class TreeNode {
val: number; // 节点值
height: number; // 节点高度
@ -108,7 +110,27 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "C"
```c title=""
/* AVL 树节点结构体 */
struct TreeNode {
int val;
int height;
struct TreeNode *left;
struct TreeNode *right;
};
typedef struct TreeNode TreeNode;
/* 构造函数 */
TreeNode *newTreeNode(int val) {
TreeNode *node;
node = (TreeNode *)malloc(sizeof(TreeNode));
node->val = val;
node->height = 0;
node->left = NULL;
node->right = NULL;
return node;
}
```
=== "C#"
@ -200,9 +222,9 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{height}
[class]{}-[func]{height}
[class]{aVLTree}-[func]{updateHeight}
[class]{}-[func]{updateHeight}
```
=== "C#"
@ -272,7 +294,7 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{balanceFactor}
[class]{}-[func]{balanceFactor}
```
=== "C#"
@ -364,7 +386,7 @@ AVL 树的特点在于「旋转 Rotation」操作它能够在不影响二叉
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{rightRotate}
[class]{}-[func]{rightRotate}
```
=== "C#"
@ -436,7 +458,7 @@ AVL 树的特点在于「旋转 Rotation」操作它能够在不影响二叉
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{leftRotate}
[class]{}-[func]{leftRotate}
```
=== "C#"
@ -529,7 +551,7 @@ AVL 树的特点在于「旋转 Rotation」操作它能够在不影响二叉
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{rotate}
[class]{}-[func]{rotate}
```
=== "C#"
@ -609,7 +631,7 @@ AVL 树的特点在于「旋转 Rotation」操作它能够在不影响二叉
```c title="avl_tree.c"
[class]{aVLTree}-[func]{insert}
[class]{aVLTree}-[func]{insertHelper}
[class]{}-[func]{insertHelper}
```
=== "C#"
@ -691,9 +713,9 @@ AVL 树的特点在于「旋转 Rotation」操作它能够在不影响二叉
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{remove}
[class]{aVLTree}-[func]{removeNode}
[class]{aVLTree}-[func]{removeHelper}
[class]{}-[func]{removeHelper}
```
=== "C#"

View File

@ -237,7 +237,7 @@
=== "C"
```c title="binary_search_tree.c"
[class]{binarySearchTree}-[func]{remove}
[class]{binarySearchTree}-[func]{removeNode}
```
=== "C#"

View File

@ -87,7 +87,27 @@
=== "C"
```c title=""
/* 二叉树节点结构体 */
struct TreeNode {
int val; // 节点值
int height; // 节点高度
struct TreeNode *left; // 左子节点指针
struct TreeNode *right; // 右子节点指针
};
typedef struct TreeNode TreeNode;
/* 构造函数 */
TreeNode *newTreeNode(int val) {
TreeNode *node;
node = (TreeNode *)malloc(sizeof(TreeNode));
node->val = val;
node->height = 0;
node->left = NULL;
node->right = NULL;
return node;
}
```
=== "C#"
@ -256,7 +276,18 @@
=== "C"
```c title="binary_tree.c"
/* 初始化二叉树 */
// 初始化节点
TreeNode *n1 = newTreeNode(1);
TreeNode *n2 = newTreeNode(2);
TreeNode *n3 = newTreeNode(3);
TreeNode *n4 = newTreeNode(4);
TreeNode *n5 = newTreeNode(5);
// 构建引用指向(即指针)
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;
```
=== "C#"
@ -376,7 +407,13 @@
=== "C"
```c title="binary_tree.c"
/* 插入与删除节点 */
TreeNode *P = newTreeNode(0);
// 在 n1 -> n2 中间插入节点 P
n1->left = P;
P->left = n2;
// 删除节点 P
n1->left = n2;
```
=== "C#"