fix: Update C code for compatibility with the MSVC compiler (#949)
* Replace VLA with malloc Replace VLA with malloc to make C code compatible with cl compiler on Windows. * Fix C code for CI compiler. * Fix C code compability to CI. * check the trigger
This commit is contained in:
parent
e4aa76ed3e
commit
f7c41b6bef
@ -76,7 +76,7 @@ int main() {
|
||||
printf("数组 arr = ");
|
||||
printArray(arr, size);
|
||||
|
||||
int nums[5] = {1, 3, 2, 5, 4};
|
||||
int nums[] = {1, 3, 2, 5, 4};
|
||||
printf("数组 nums = ");
|
||||
printArray(nums, size);
|
||||
|
||||
|
@ -36,7 +36,7 @@ int main() {
|
||||
preOrder(root);
|
||||
|
||||
printf("\n输出所有值为 7 的节点\n");
|
||||
int vals[resSize];
|
||||
int *vals = malloc(resSize * sizeof(int));
|
||||
for (int i = 0; i < resSize; i++) {
|
||||
vals[i] = res[i]->val;
|
||||
}
|
||||
@ -44,5 +44,6 @@ int main() {
|
||||
|
||||
// 释放内存
|
||||
freeMemoryTree(root);
|
||||
free(vals);
|
||||
return 0;
|
||||
}
|
||||
|
@ -46,12 +46,13 @@ int main() {
|
||||
|
||||
printf("\n输出所有根节点到节点 7 的路径\n");
|
||||
for (int i = 0; i < resSize; ++i) {
|
||||
int vals[MAX_SIZE];
|
||||
int *vals = malloc(MAX_SIZE * sizeof(int));
|
||||
int size = 0;
|
||||
for (int j = 0; res[i][j] != NULL; ++j) {
|
||||
vals[size++] = res[i][j]->val;
|
||||
}
|
||||
printArray(vals, size);
|
||||
free(vals);
|
||||
}
|
||||
|
||||
// 释放内存
|
||||
|
@ -47,12 +47,13 @@ int main() {
|
||||
|
||||
printf("\n输出所有根节点到节点 7 的路径,要求路径中不包含值为 3 的节点\n");
|
||||
for (int i = 0; i < resSize; ++i) {
|
||||
int vals[MAX_SIZE];
|
||||
int *vals = malloc(MAX_SIZE * sizeof(int));
|
||||
int size = 0;
|
||||
for (int j = 0; res[i][j] != NULL; ++j) {
|
||||
vals[size++] = res[i][j]->val;
|
||||
}
|
||||
printArray(vals, size);
|
||||
free(vals);
|
||||
}
|
||||
|
||||
// 释放内存
|
||||
|
@ -78,12 +78,13 @@ int main() {
|
||||
|
||||
printf("\n输出所有根节点到节点 7 的路径,要求路径中不包含值为 3 的节点\n");
|
||||
for (int i = 0; i < resSize; ++i) {
|
||||
int vals[MAX_SIZE];
|
||||
int *vals = malloc(MAX_SIZE * sizeof(int));
|
||||
int size = 0;
|
||||
for (int j = 0; res[i][j] != NULL; ++j) {
|
||||
vals[size++] = res[i][j]->val;
|
||||
}
|
||||
printArray(vals, size);
|
||||
free(vals);
|
||||
}
|
||||
|
||||
// 释放内存
|
||||
|
@ -12,8 +12,10 @@ int climbingStairsConstraintDP(int n) {
|
||||
return 1;
|
||||
}
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
int dp[n + 1][3];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
int **dp = malloc((n + 1) * sizeof(int *));
|
||||
for (int i = 0; i <= n; i++) {
|
||||
dp[i] = calloc(3, sizeof(int));
|
||||
}
|
||||
// 初始状态:预设最小子问题的解
|
||||
dp[1][1] = 1;
|
||||
dp[1][2] = 0;
|
||||
@ -24,7 +26,13 @@ int climbingStairsConstraintDP(int n) {
|
||||
dp[i][1] = dp[i - 1][2];
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
|
||||
}
|
||||
return dp[n][1] + dp[n][2];
|
||||
int res = dp[n][1] + dp[n][2];
|
||||
// 释放内存
|
||||
for (int i = 0; i <= n; i++) {
|
||||
free(dp[i]);
|
||||
}
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
|
@ -7,7 +7,7 @@
|
||||
#include "../utils/common.h"
|
||||
|
||||
/* 求最小值 */
|
||||
int min(int a, int b) {
|
||||
int myMin(int a, int b) {
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
@ -16,8 +16,10 @@ int coinChangeDP(int coins[], int amt, int coinsSize) {
|
||||
int n = coinsSize;
|
||||
int MAX = amt + 1;
|
||||
// 初始化 dp 表
|
||||
int dp[n + 1][amt + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
int **dp = malloc((n + 1) * sizeof(int *));
|
||||
for (int i = 0; i <= n; i++) {
|
||||
dp[i] = calloc(amt + 1, sizeof(int));
|
||||
}
|
||||
// 状态转移:首行首列
|
||||
for (int a = 1; a <= amt; a++) {
|
||||
dp[0][a] = MAX;
|
||||
@ -30,11 +32,17 @@ int coinChangeDP(int coins[], int amt, int coinsSize) {
|
||||
dp[i][a] = dp[i - 1][a];
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案的较小值
|
||||
dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);
|
||||
dp[i][a] = myMin(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][amt] != MAX ? dp[n][amt] : -1;
|
||||
int res = dp[n][amt] != MAX ? dp[n][amt] : -1;
|
||||
// 释放内存
|
||||
for (int i = 0; i <= n; i++) {
|
||||
free(dp[i]);
|
||||
}
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* 零钱兑换:空间优化后的动态规划 */
|
||||
@ -42,8 +50,7 @@ int coinChangeDPComp(int coins[], int amt, int coinsSize) {
|
||||
int n = coinsSize;
|
||||
int MAX = amt + 1;
|
||||
// 初始化 dp 表
|
||||
int dp[amt + 1];
|
||||
memset(dp, MAX, sizeof(dp));
|
||||
int *dp = calloc(amt + 1, sizeof(int));
|
||||
dp[0] = 0;
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
@ -53,11 +60,14 @@ int coinChangeDPComp(int coins[], int amt, int coinsSize) {
|
||||
dp[a] = dp[a];
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案的较小值
|
||||
dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);
|
||||
dp[a] = myMin(dp[a], dp[a - coins[i - 1]] + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[amt] != MAX ? dp[amt] : -1;
|
||||
int res = dp[amt] != MAX ? dp[amt] : -1;
|
||||
// 释放内存
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Driver code */
|
||||
|
@ -10,8 +10,10 @@
|
||||
int coinChangeIIDP(int coins[], int amt, int coinsSize) {
|
||||
int n = coinsSize;
|
||||
// 初始化 dp 表
|
||||
int dp[n + 1][amt + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
int **dp = malloc((n + 1) * sizeof(int *));
|
||||
for (int i = 0; i <= n; i++) {
|
||||
dp[i] = calloc(amt + 1, sizeof(int));
|
||||
}
|
||||
// 初始化首列
|
||||
for (int i = 0; i <= n; i++) {
|
||||
dp[i][0] = 1;
|
||||
@ -28,15 +30,20 @@ int coinChangeIIDP(int coins[], int amt, int coinsSize) {
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][amt];
|
||||
int res = dp[n][amt];
|
||||
// 释放内存
|
||||
for (int i = 0; i <= n; i++) {
|
||||
free(dp[i]);
|
||||
}
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* 零钱兑换 II:空间优化后的动态规划 */
|
||||
int coinChangeIIDPComp(int coins[], int amt, int coinsSize) {
|
||||
int n = coinsSize;
|
||||
// 初始化 dp 表
|
||||
int dp[amt + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
int *dp = calloc(amt + 1, sizeof(int));
|
||||
dp[0] = 1;
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
@ -50,7 +57,10 @@ int coinChangeIIDPComp(int coins[], int amt, int coinsSize) {
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[amt];
|
||||
int res = dp[amt];
|
||||
// 释放内存
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Driver code */
|
||||
|
@ -7,12 +7,12 @@
|
||||
#include "../utils/common.h"
|
||||
|
||||
/* 求最小值 */
|
||||
int min(int a, int b) {
|
||||
int myMin(int a, int b) {
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
/* 编辑距离:暴力搜索 */
|
||||
int editDistanceDFS(char *s, char *t, int i, int j) {
|
||||
int editDistanceDFS(char *s, char *t, int i, int j) {
|
||||
// 若 s 和 t 都为空,则返回 0
|
||||
if (i == 0 && j == 0)
|
||||
return 0;
|
||||
@ -30,11 +30,11 @@ int editDistanceDFS(char *s, char *t, int i, int j) {
|
||||
int del = editDistanceDFS(s, t, i - 1, j);
|
||||
int replace = editDistanceDFS(s, t, i - 1, j - 1);
|
||||
// 返回最少编辑步数
|
||||
return min(min(insert, del), replace) + 1;
|
||||
return myMin(myMin(insert, del), replace) + 1;
|
||||
}
|
||||
|
||||
/* 编辑距离:记忆化搜索 */
|
||||
int editDistanceDFSMem(char *s, char *t, int memCols, int mem[][memCols], int i, int j) {
|
||||
int editDistanceDFSMem(char *s, char *t, int memCols, int **mem, int i, int j) {
|
||||
// 若 s 和 t 都为空,则返回 0
|
||||
if (i == 0 && j == 0)
|
||||
return 0;
|
||||
@ -55,14 +55,16 @@ int editDistanceDFSMem(char *s, char *t, int memCols, int mem[][memCols], int i,
|
||||
int del = editDistanceDFSMem(s, t, memCols, mem, i - 1, j);
|
||||
int replace = editDistanceDFSMem(s, t, memCols, mem, i - 1, j - 1);
|
||||
// 记录并返回最少编辑步数
|
||||
mem[i][j] = min(min(insert, del), replace) + 1;
|
||||
mem[i][j] = myMin(myMin(insert, del), replace) + 1;
|
||||
return mem[i][j];
|
||||
}
|
||||
|
||||
/* 编辑距离:动态规划 */
|
||||
int editDistanceDP(char *s, char *t, int n, int m) {
|
||||
int dp[n + 1][m + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
int **dp = malloc((n + 1) * sizeof(int *));
|
||||
for (int i = 0; i <= n; i++) {
|
||||
dp[i] = calloc(m + 1, sizeof(int));
|
||||
}
|
||||
// 状态转移:首行首列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
dp[i][0] = i;
|
||||
@ -78,17 +80,21 @@ int editDistanceDP(char *s, char *t, int n, int m) {
|
||||
dp[i][j] = dp[i - 1][j - 1];
|
||||
} else {
|
||||
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
|
||||
dp[i][j] = myMin(myMin(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m];
|
||||
int res = dp[n][m];
|
||||
// 释放内存
|
||||
for (int i = 0; i <= n; i++) {
|
||||
free(dp[i]);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* 编辑距离:空间优化后的动态规划 */
|
||||
int editDistanceDPComp(char *s, char *t, int n, int m) {
|
||||
int dp[m + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
int *dp = calloc(m + 1, sizeof(int));
|
||||
// 状态转移:首行
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[j] = j;
|
||||
@ -106,12 +112,15 @@ int editDistanceDPComp(char *s, char *t, int n, int m) {
|
||||
dp[j] = leftup;
|
||||
} else {
|
||||
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;
|
||||
dp[j] = myMin(myMin(dp[j - 1], dp[j]), leftup) + 1;
|
||||
}
|
||||
leftup = temp; // 更新为下一轮的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m];
|
||||
int res = dp[m];
|
||||
// 释放内存
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
@ -125,10 +134,18 @@ int main() {
|
||||
printf("将 %s 更改为 %s 最少需要编辑 %d 步\n", s, t, res);
|
||||
|
||||
// 记忆化搜索
|
||||
int mem[n + 1][m + 1];
|
||||
memset(mem, -1, sizeof(mem));
|
||||
int **mem = malloc((n + 1) * sizeof(int *));
|
||||
for (int i = 0; i <= n; i++) {
|
||||
mem[i] = malloc((m + 1) * sizeof(int));
|
||||
memset(mem[i], -1, (m + 1) * sizeof(int));
|
||||
}
|
||||
res = editDistanceDFSMem(s, t, m + 1, mem, n, m);
|
||||
printf("将 %s 更改为 %s 最少需要编辑 %d 步\n", s, t, res);
|
||||
// 释放内存
|
||||
for (int i = 0; i <= n; i++) {
|
||||
free(mem[i]);
|
||||
}
|
||||
free(mem);
|
||||
|
||||
// 动态规划
|
||||
res = editDistanceDP(s, t, n, m);
|
||||
|
@ -7,7 +7,7 @@
|
||||
#include "../utils/common.h"
|
||||
|
||||
/* 求最大值 */
|
||||
int max(int a, int b) {
|
||||
int myMax(int a, int b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
@ -25,11 +25,11 @@ int knapsackDFS(int wgt[], int val[], int i, int c) {
|
||||
int no = knapsackDFS(wgt, val, i - 1, c);
|
||||
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
|
||||
// 返回两种方案中价值更大的那一个
|
||||
return max(no, yes);
|
||||
return myMax(no, yes);
|
||||
}
|
||||
|
||||
/* 0-1 背包:记忆化搜索 */
|
||||
int knapsackDFSMem(int wgt[], int val[], int memCols, int mem[][memCols], int i, int c) {
|
||||
int knapsackDFSMem(int wgt[], int val[], int memCols, int **mem, int i, int c) {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if (i == 0 || c == 0) {
|
||||
return 0;
|
||||
@ -46,7 +46,7 @@ int knapsackDFSMem(int wgt[], int val[], int memCols, int mem[][memCols], int i,
|
||||
int no = knapsackDFSMem(wgt, val, memCols, mem, i - 1, c);
|
||||
int yes = knapsackDFSMem(wgt, val, memCols, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
|
||||
// 记录并返回两种方案中价值更大的那一个
|
||||
mem[i][c] = max(no, yes);
|
||||
mem[i][c] = myMax(no, yes);
|
||||
return mem[i][c];
|
||||
}
|
||||
|
||||
@ -54,8 +54,10 @@ int knapsackDFSMem(int wgt[], int val[], int memCols, int mem[][memCols], int i,
|
||||
int knapsackDP(int wgt[], int val[], int cap, int wgtSize) {
|
||||
int n = wgtSize;
|
||||
// 初始化 dp 表
|
||||
int dp[n + 1][cap + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
int **dp = malloc((n + 1) * sizeof(int *));
|
||||
for (int i = 0; i <= n; i++) {
|
||||
dp[i] = calloc(cap + 1, sizeof(int));
|
||||
}
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int c = 1; c <= cap; c++) {
|
||||
@ -64,30 +66,37 @@ int knapsackDP(int wgt[], int val[], int cap, int wgtSize) {
|
||||
dp[i][c] = dp[i - 1][c];
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
|
||||
dp[i][c] = myMax(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][cap];
|
||||
int res = dp[n][cap];
|
||||
// 释放内存
|
||||
for (int i = 0; i <= n; i++) {
|
||||
free(dp[i]);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* 0-1 背包:空间优化后的动态规划 */
|
||||
int knapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {
|
||||
int n = wgtSize;
|
||||
// 初始化 dp 表
|
||||
int dp[cap + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
int *dp = calloc(cap + 1, sizeof(int));
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 倒序遍历
|
||||
for (int c = cap; c >= 1; c--) {
|
||||
if (wgt[i - 1] <= c) {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
||||
dp[c] = myMax(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[cap];
|
||||
int res = dp[cap];
|
||||
// 释放内存
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
@ -103,10 +112,18 @@ int main() {
|
||||
printf("不超过背包容量的最大物品价值为 %d\n", res);
|
||||
|
||||
// 记忆化搜索
|
||||
int mem[n + 1][cap + 1];
|
||||
memset(mem, -1, sizeof(mem));
|
||||
int **mem = malloc((n + 1) * sizeof(int *));
|
||||
for (int i = 0; i <= n; i++) {
|
||||
mem[i] = malloc((cap + 1) * sizeof(int));
|
||||
memset(mem[i], -1, (cap + 1) * sizeof(int));
|
||||
}
|
||||
res = knapsackDFSMem(wgt, val, cap + 1, mem, n, cap);
|
||||
printf("不超过背包容量的最大物品价值为 %d\n", res);
|
||||
// 释放内存
|
||||
for (int i = 0; i <= n; i++) {
|
||||
free(mem[i]);
|
||||
}
|
||||
free(mem);
|
||||
|
||||
// 动态规划
|
||||
res = knapsackDP(wgt, val, cap, wgtSize);
|
||||
|
@ -7,7 +7,7 @@
|
||||
#include "../utils/common.h"
|
||||
|
||||
/* 求最小值 */
|
||||
int min(int a, int b) {
|
||||
int myMin(int a, int b) {
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
@ -17,15 +17,18 @@ int minCostClimbingStairsDP(int cost[], int costSize) {
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
int dp[n + 1];
|
||||
int *dp = calloc(n + 1, sizeof(int));
|
||||
// 初始状态:预设最小子问题的解
|
||||
dp[1] = cost[1];
|
||||
dp[2] = cost[2];
|
||||
// 状态转移:从较小子问题逐步求解较大子问题
|
||||
for (int i = 3; i <= n; i++) {
|
||||
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
|
||||
dp[i] = myMin(dp[i - 1], dp[i - 2]) + cost[i];
|
||||
}
|
||||
return dp[n];
|
||||
int res = dp[n];
|
||||
// 释放内存
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* 爬楼梯最小代价:空间优化后的动态规划 */
|
||||
@ -36,7 +39,7 @@ int minCostClimbingStairsDPComp(int cost[], int costSize) {
|
||||
int a = cost[1], b = cost[2];
|
||||
for (int i = 3; i <= n; i++) {
|
||||
int tmp = b;
|
||||
b = min(a, tmp) + cost[i];
|
||||
b = myMin(a, tmp) + cost[i];
|
||||
a = tmp;
|
||||
}
|
||||
return b;
|
||||
@ -46,14 +49,8 @@ int minCostClimbingStairsDPComp(int cost[], int costSize) {
|
||||
int main() {
|
||||
int cost[] = {0, 1, 10, 1, 1, 1, 10, 1, 1, 10, 1};
|
||||
int costSize = sizeof(cost) / sizeof(cost[0]);
|
||||
printf("输入楼梯的代价列表为 [");
|
||||
for (int i = 0; i < costSize; i++) {
|
||||
if (i != costSize - 1)
|
||||
printf("%d, ", cost[i]);
|
||||
else
|
||||
printf("%d", cost[i]);
|
||||
}
|
||||
printf("]\n");
|
||||
printf("输入楼梯的代价列表为:");
|
||||
printArray(cost, costSize);
|
||||
|
||||
int res = minCostClimbingStairsDP(cost, costSize);
|
||||
printf("爬完楼梯的最低代价为 %d\n", res);
|
||||
|
@ -6,13 +6,16 @@
|
||||
|
||||
#include "../utils/common.h"
|
||||
|
||||
// 假设矩阵最大行列数为 100
|
||||
#define MAX_SIZE 100
|
||||
|
||||
/* 求最小值 */
|
||||
int min(int a, int b) {
|
||||
int myMin(int a, int b) {
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
/* 最小路径和:暴力搜索 */
|
||||
int minPathSumDFS(int gridCols, int grid[][gridCols], int i, int j) {
|
||||
int minPathSumDFS(int grid[MAX_SIZE][MAX_SIZE], int i, int j) {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if (i == 0 && j == 0) {
|
||||
return grid[0][0];
|
||||
@ -22,14 +25,14 @@ int minPathSumDFS(int gridCols, int grid[][gridCols], int i, int j) {
|
||||
return INT_MAX;
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
int up = minPathSumDFS(gridCols, grid, i - 1, j);
|
||||
int left = minPathSumDFS(gridCols, grid, i, j - 1);
|
||||
int up = minPathSumDFS(grid, i - 1, j);
|
||||
int left = minPathSumDFS(grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
||||
return myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
|
||||
}
|
||||
|
||||
/* 最小路径和:记忆化搜索 */
|
||||
int minPathSumDFSMem(int gridCols, int grid[][gridCols], int mem[][gridCols], int i, int j) {
|
||||
int minPathSumDFSMem(int grid[MAX_SIZE][MAX_SIZE], int mem[MAX_SIZE][MAX_SIZE], int i, int j) {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if (i == 0 && j == 0) {
|
||||
return grid[0][0];
|
||||
@ -43,17 +46,20 @@ int minPathSumDFSMem(int gridCols, int grid[][gridCols], int mem[][gridCols], in
|
||||
return mem[i][j];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
int up = minPathSumDFSMem(gridCols, grid, mem, i - 1, j);
|
||||
int left = minPathSumDFSMem(gridCols, grid, mem, i, j - 1);
|
||||
int up = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int left = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
||||
mem[i][j] = myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
|
||||
return mem[i][j];
|
||||
}
|
||||
|
||||
/* 最小路径和:动态规划 */
|
||||
int minPathSumDP(int gridCols, int grid[][gridCols], int n, int m) {
|
||||
int minPathSumDP(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
|
||||
// 初始化 dp 表
|
||||
int dp[n][m];
|
||||
int **dp = malloc(n * sizeof(int *));
|
||||
for (int i = 0; i < n; i++) {
|
||||
dp[i] = calloc(m, sizeof(int));
|
||||
}
|
||||
dp[0][0] = grid[0][0];
|
||||
// 状态转移:首行
|
||||
for (int j = 1; j < m; j++) {
|
||||
@ -66,16 +72,21 @@ int minPathSumDP(int gridCols, int grid[][gridCols], int n, int m) {
|
||||
// 状态转移:其余行列
|
||||
for (int i = 1; i < n; i++) {
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
||||
dp[i][j] = myMin(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
||||
}
|
||||
}
|
||||
return dp[n - 1][m - 1];
|
||||
int res = dp[n - 1][m - 1];
|
||||
// 释放内存
|
||||
for (int i = 0; i < n; i++) {
|
||||
free(dp[i]);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* 最小路径和:空间优化后的动态规划 */
|
||||
int minPathSumDPComp(int gridCols, int grid[][gridCols], int n, int m) {
|
||||
int minPathSumDPComp(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
|
||||
// 初始化 dp 表
|
||||
int dp[m];
|
||||
int *dp = calloc(m, sizeof(int));
|
||||
// 状态转移:首行
|
||||
dp[0] = grid[0][0];
|
||||
for (int j = 1; j < m; j++) {
|
||||
@ -87,33 +98,36 @@ int minPathSumDPComp(int gridCols, int grid[][gridCols], int n, int m) {
|
||||
dp[0] = dp[0] + grid[i][0];
|
||||
// 状态转移:其余列
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
|
||||
dp[j] = myMin(dp[j - 1], dp[j]) + grid[i][j];
|
||||
}
|
||||
}
|
||||
return dp[m - 1];
|
||||
int res = dp[m - 1];
|
||||
// 释放内存
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
int main() {
|
||||
int grid[][4] = {{1, 3, 1, 5}, {2, 2, 4, 2}, {5, 3, 2, 1}, {4, 3, 5, 2}};
|
||||
int n = sizeof(grid) / sizeof(grid[0]), m = sizeof(grid[0]) / sizeof(grid[0][0]);
|
||||
int grid[MAX_SIZE][MAX_SIZE] = {{1, 3, 1, 5}, {2, 2, 4, 2}, {5, 3, 2, 1}, {4, 3, 5, 2}};
|
||||
int n = 4, m = 4; // 矩阵容量为 MAX_SIZE * MAX_SIZE ,有效行列数为 n * m
|
||||
|
||||
// 暴力搜索
|
||||
int res = minPathSumDFS(m, grid, n - 1, m - 1);
|
||||
int res = minPathSumDFS(grid, n - 1, m - 1);
|
||||
printf("从左上角到右下角的最小路径和为 %d\n", res);
|
||||
|
||||
// 记忆化搜索
|
||||
int mem[n][m];
|
||||
int mem[MAX_SIZE][MAX_SIZE];
|
||||
memset(mem, -1, sizeof(mem));
|
||||
res = minPathSumDFSMem(m, grid, mem, n - 1, m - 1);
|
||||
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
|
||||
printf("从左上角到右下角的最小路径和为 %d\n", res);
|
||||
|
||||
// 动态规划
|
||||
res = minPathSumDP(m, grid, n, m);
|
||||
res = minPathSumDP(grid, n, m);
|
||||
printf("从左上角到右下角的最小路径和为 %d\n", res);
|
||||
|
||||
// 空间优化后的动态规划
|
||||
res = minPathSumDPComp(m, grid, n, m);
|
||||
res = minPathSumDPComp(grid, n, m);
|
||||
printf("从左上角到右下角的最小路径和为 %d\n", res);
|
||||
|
||||
return 0;
|
||||
|
@ -7,7 +7,7 @@
|
||||
#include "../utils/common.h"
|
||||
|
||||
/* 求最大值 */
|
||||
int max(int a, int b) {
|
||||
int myMax(int a, int b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
@ -15,8 +15,10 @@ int max(int a, int b) {
|
||||
int unboundedKnapsackDP(int wgt[], int val[], int cap, int wgtSize) {
|
||||
int n = wgtSize;
|
||||
// 初始化 dp 表
|
||||
int dp[n + 1][cap + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
int **dp = malloc((n + 1) * sizeof(int *));
|
||||
for (int i = 0; i <= n; i++) {
|
||||
dp[i] = calloc(cap + 1, sizeof(int));
|
||||
}
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int c = 1; c <= cap; c++) {
|
||||
@ -25,19 +27,23 @@ int unboundedKnapsackDP(int wgt[], int val[], int cap, int wgtSize) {
|
||||
dp[i][c] = dp[i - 1][c];
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
|
||||
dp[i][c] = myMax(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][cap];
|
||||
int res = dp[n][cap];
|
||||
// 释放内存
|
||||
for (int i = 0; i <= n; i++) {
|
||||
free(dp[i]);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* 完全背包:空间优化后的动态规划 */
|
||||
int unboundedKnapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {
|
||||
int n = wgtSize;
|
||||
// 初始化 dp 表
|
||||
int dp[cap + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
int *dp = calloc(cap + 1, sizeof(int));
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int c = 1; c <= cap; c++) {
|
||||
@ -46,11 +52,14 @@ int unboundedKnapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {
|
||||
dp[c] = dp[c];
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
||||
dp[c] = myMax(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[cap];
|
||||
int res = dp[cap];
|
||||
// 释放内存
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Driver code */
|
||||
|
@ -2,4 +2,7 @@ add_executable(coin_change_greedy coin_change_greedy.c)
|
||||
add_executable(fractional_knapsack fractional_knapsack.c)
|
||||
add_executable(max_capacity max_capacity.c)
|
||||
add_executable(max_product_cutting max_product_cutting.c)
|
||||
target_link_libraries(max_product_cutting m)
|
||||
|
||||
if (NOT CMAKE_C_COMPILER_ID STREQUAL "MSVC")
|
||||
target_link_libraries(max_product_cutting m)
|
||||
endif()
|
||||
|
@ -6,8 +6,14 @@
|
||||
|
||||
#include "../utils/common.h"
|
||||
|
||||
#define MIN(a, b) (a < b ? a : b)
|
||||
#define MAX(a, b) (a > b ? a : b)
|
||||
/* 求最小值 */
|
||||
int myMin(int a, int b) {
|
||||
return a < b ? a : b;
|
||||
}
|
||||
/* 求最大值 */
|
||||
int myMax(int a, int b) {
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
/* 最大容量:贪心 */
|
||||
int maxCapacity(int ht[], int htLength) {
|
||||
@ -19,8 +25,8 @@ int maxCapacity(int ht[], int htLength) {
|
||||
// 循环贪心选择,直至两板相遇
|
||||
while (i < j) {
|
||||
// 更新最大容量
|
||||
int capacity = MIN(ht[i], ht[j]) * (j - i);
|
||||
res = MAX(res, capacity);
|
||||
int capacity = myMin(ht[i], ht[j]) * (j - i);
|
||||
res = myMax(res, capacity);
|
||||
// 向内移动短板
|
||||
if (ht[i] < ht[j]) {
|
||||
i++;
|
||||
|
@ -38,7 +38,7 @@ int *getMinHeap(MaxHeap *maxHeap) {
|
||||
int *topKHeap(int *nums, int sizeNums, int k) {
|
||||
// 初始化小顶堆
|
||||
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
|
||||
int empty[0];
|
||||
int *empty = (int *)malloc(0);
|
||||
MaxHeap *maxHeap = newMaxHeap(empty, 0);
|
||||
// 将数组的前 k 个元素入堆
|
||||
for (int i = 0; i < k; i++) {
|
||||
|
@ -111,16 +111,6 @@ int popLast(ArrayDeque *deque) {
|
||||
return num;
|
||||
}
|
||||
|
||||
/* 打印队列 */
|
||||
void printArrayDeque(ArrayDeque *deque) {
|
||||
int arr[deque->queSize];
|
||||
// 拷贝
|
||||
for (int i = 0, j = deque->front; i < deque->queSize; i++, j++) {
|
||||
arr[i] = deque->nums[j % deque->queCapacity];
|
||||
}
|
||||
printArray(arr, deque->queSize);
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
int main() {
|
||||
/* 初始化队列 */
|
||||
@ -130,7 +120,7 @@ int main() {
|
||||
pushLast(deque, 2);
|
||||
pushLast(deque, 5);
|
||||
printf("双向队列 deque = ");
|
||||
printArrayDeque(deque);
|
||||
printArray(deque->nums, deque->queSize);
|
||||
|
||||
/* 访问元素 */
|
||||
int peekFirstNum = peekFirst(deque);
|
||||
@ -141,18 +131,18 @@ int main() {
|
||||
/* 元素入队 */
|
||||
pushLast(deque, 4);
|
||||
printf("元素 4 队尾入队后 deque = ");
|
||||
printArrayDeque(deque);
|
||||
printArray(deque->nums, deque->queSize);
|
||||
pushFirst(deque, 1);
|
||||
printf("元素 1 队首入队后 deque = ");
|
||||
printArrayDeque(deque);
|
||||
printArray(deque->nums, deque->queSize);
|
||||
|
||||
/* 元素出队 */
|
||||
int popLastNum = popLast(deque);
|
||||
printf("队尾出队元素 = %d ,队尾出队后 deque= ", popLastNum);
|
||||
printArrayDeque(deque);
|
||||
printArray(deque->nums, deque->queSize);
|
||||
int popFirstNum = popFirst(deque);
|
||||
printf("队首出队元素 = %d ,队首出队后 deque= ", popFirstNum);
|
||||
printArrayDeque(deque);
|
||||
printArray(deque->nums, deque->queSize);
|
||||
|
||||
/* 获取队列的长度 */
|
||||
int dequeSize = size(deque);
|
||||
|
@ -73,16 +73,6 @@ void pop(ArrayQueue *queue) {
|
||||
queue->queSize--;
|
||||
}
|
||||
|
||||
/* 打印队列 */
|
||||
void printArrayQueue(ArrayQueue *queue) {
|
||||
int arr[queue->queSize];
|
||||
// 拷贝
|
||||
for (int i = 0, j = queue->front; i < queue->queSize; i++, j++) {
|
||||
arr[i] = queue->nums[j % queue->queCapacity];
|
||||
}
|
||||
printArray(arr, queue->queSize);
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
int main() {
|
||||
/* 初始化队列 */
|
||||
@ -96,7 +86,7 @@ int main() {
|
||||
push(queue, 5);
|
||||
push(queue, 4);
|
||||
printf("队列 queue = ");
|
||||
printArrayQueue(queue);
|
||||
printArray(queue->nums, queue->queSize);
|
||||
|
||||
/* 访问队首元素 */
|
||||
int peekNum = peek(queue);
|
||||
@ -105,7 +95,7 @@ int main() {
|
||||
/* 元素出队 */
|
||||
pop(queue);
|
||||
printf("出队元素 pop = %d ,出队后 queue = ", peekNum);
|
||||
printArrayQueue(queue);
|
||||
printArray(queue->nums, queue->queSize);
|
||||
|
||||
/* 获取队列的长度 */
|
||||
int queueSize = size(queue);
|
||||
@ -120,7 +110,7 @@ int main() {
|
||||
push(queue, i);
|
||||
pop(queue);
|
||||
printf("第 %d 轮入队 + 出队后 queue = ", i);
|
||||
printArrayQueue(queue);
|
||||
printArray(queue->nums, queue->queSize);
|
||||
}
|
||||
|
||||
// 释放内存
|
||||
|
@ -153,7 +153,7 @@ int popLast(LinkedListDeque *deque) {
|
||||
|
||||
/* 打印队列 */
|
||||
void printLinkedListDeque(LinkedListDeque *deque) {
|
||||
int arr[deque->queSize];
|
||||
int *arr = malloc(sizeof(int) * deque->queSize);
|
||||
// 拷贝链表中的数据到数组
|
||||
int i;
|
||||
DoublyListNode *node;
|
||||
@ -162,6 +162,7 @@ void printLinkedListDeque(LinkedListDeque *deque) {
|
||||
node = node->next;
|
||||
}
|
||||
printArray(arr, deque->queSize);
|
||||
free(arr);
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
|
@ -77,7 +77,7 @@ void pop(LinkedListQueue *queue) {
|
||||
|
||||
/* 打印队列 */
|
||||
void printLinkedListQueue(LinkedListQueue *queue) {
|
||||
int arr[queue->queSize];
|
||||
int *arr = malloc(sizeof(int) * queue->queSize);
|
||||
// 拷贝链表中的数据到数组
|
||||
int i;
|
||||
ListNode *node;
|
||||
@ -86,6 +86,7 @@ void printLinkedListQueue(LinkedListQueue *queue) {
|
||||
node = node->next;
|
||||
}
|
||||
printArray(arr, queue->queSize);
|
||||
free(arr);
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
|
@ -19,49 +19,33 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
/* Print an Array */
|
||||
static void printArray(int arr[], int size) {
|
||||
printf("[");
|
||||
if (arr != NULL && size != 0) {
|
||||
for (int i = 0; i < size - 1; i++) {
|
||||
if (arr[i] != INT_MAX) {
|
||||
printf("%d, ", arr[i]);
|
||||
} else {
|
||||
printf("NULL, ");
|
||||
}
|
||||
}
|
||||
if (arr[size - 1] != INT_MAX) {
|
||||
printf("%d]\n", arr[size - 1]);
|
||||
} else {
|
||||
printf("NULL]\n");
|
||||
}
|
||||
} else {
|
||||
printf("]\n");
|
||||
void printArray(int arr[], int size) {
|
||||
if (arr == NULL || size == 0) {
|
||||
printf("[]");
|
||||
return;
|
||||
}
|
||||
printf("[");
|
||||
for (int i = 0; i < size - 1; i++) {
|
||||
printf("%d, ", arr[i]);
|
||||
}
|
||||
printf("%d]\n", arr[size - 1]);
|
||||
}
|
||||
|
||||
/* Print an Array */
|
||||
static void printArrayFloat(float arr[], int size) {
|
||||
printf("[");
|
||||
if (arr != NULL && size != 0) {
|
||||
for (int i = 0; i < size - 1; i++) {
|
||||
if (arr[i] != INT_MAX) {
|
||||
printf("%.2f, ", arr[i]);
|
||||
} else {
|
||||
printf("NULL, ");
|
||||
}
|
||||
}
|
||||
if (arr[size - 1] != INT_MAX) {
|
||||
printf("%.2f]\n", arr[size - 1]);
|
||||
} else {
|
||||
printf("NULL]\n");
|
||||
}
|
||||
} else {
|
||||
printf("]");
|
||||
void printArrayFloat(float arr[], int size) {
|
||||
if (arr == NULL || size == 0) {
|
||||
printf("[]");
|
||||
return;
|
||||
}
|
||||
printf("[");
|
||||
for (int i = 0; i < size - 1; i++) {
|
||||
printf("%.2f, ", arr[i]);
|
||||
}
|
||||
printf("%.2f]\n", arr[size - 1]);
|
||||
}
|
||||
|
||||
/* Print a linked list */
|
||||
static void printLinkedList(ListNode *node) {
|
||||
void printLinkedList(ListNode *node) {
|
||||
if (node == NULL) {
|
||||
return;
|
||||
}
|
||||
@ -95,7 +79,7 @@ void showTrunks(Trunk *trunk) {
|
||||
}
|
||||
|
||||
/* Help to print a binary tree, hide more details */
|
||||
static void printTreeHelper(TreeNode *node, Trunk *prev, bool isRight) {
|
||||
void printTreeHelper(TreeNode *node, Trunk *prev, bool isRight) {
|
||||
if (node == NULL) {
|
||||
return;
|
||||
}
|
||||
@ -123,12 +107,12 @@ static void printTreeHelper(TreeNode *node, Trunk *prev, bool isRight) {
|
||||
}
|
||||
|
||||
/* Print a binary tree */
|
||||
static void printTree(TreeNode *root) {
|
||||
void printTree(TreeNode *root) {
|
||||
printTreeHelper(root, NULL, false);
|
||||
}
|
||||
|
||||
/* Print a Heap */
|
||||
static void printHeap(int arr[], int size) {
|
||||
void printHeap(int arr[], int size) {
|
||||
TreeNode *root;
|
||||
printf("堆的数组表示:");
|
||||
printArray(arr, size);
|
||||
|
@ -9,7 +9,7 @@
|
||||
vector<TreeNode *> res;
|
||||
|
||||
/* 前序遍历:例题一 */
|
||||
static void preOrder(TreeNode *root) {
|
||||
void preOrder(TreeNode *root) {
|
||||
if (root == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
@ -10,7 +10,7 @@ vector<TreeNode *> path;
|
||||
vector<vector<TreeNode *>> res;
|
||||
|
||||
/* 前序遍历:例题二 */
|
||||
static void preOrder(TreeNode *root) {
|
||||
void preOrder(TreeNode *root) {
|
||||
if (root == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user