fix: Update C code for compatibility with the MSVC compiler (#949)

* Replace VLA with malloc
Replace VLA with malloc to make C code
compatible with cl compiler on Windows.

* Fix C code for CI compiler.

* Fix C code compability to CI.

* check the trigger
This commit is contained in:
Yudong Jin 2023-11-17 00:29:54 +08:00 committed by GitHub
parent e4aa76ed3e
commit f7c41b6bef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
23 changed files with 235 additions and 174 deletions

View File

@ -76,7 +76,7 @@ int main() {
printf("数组 arr = ");
printArray(arr, size);
int nums[5] = {1, 3, 2, 5, 4};
int nums[] = {1, 3, 2, 5, 4};
printf("数组 nums = ");
printArray(nums, size);

View File

@ -36,7 +36,7 @@ int main() {
preOrder(root);
printf("\n输出所有值为 7 的节点\n");
int vals[resSize];
int *vals = malloc(resSize * sizeof(int));
for (int i = 0; i < resSize; i++) {
vals[i] = res[i]->val;
}
@ -44,5 +44,6 @@ int main() {
// 释放内存
freeMemoryTree(root);
free(vals);
return 0;
}

View File

@ -46,12 +46,13 @@ int main() {
printf("\n输出所有根节点到节点 7 的路径\n");
for (int i = 0; i < resSize; ++i) {
int vals[MAX_SIZE];
int *vals = malloc(MAX_SIZE * sizeof(int));
int size = 0;
for (int j = 0; res[i][j] != NULL; ++j) {
vals[size++] = res[i][j]->val;
}
printArray(vals, size);
free(vals);
}
// 释放内存

View File

@ -47,12 +47,13 @@ int main() {
printf("\n输出所有根节点到节点 7 的路径,要求路径中不包含值为 3 的节点\n");
for (int i = 0; i < resSize; ++i) {
int vals[MAX_SIZE];
int *vals = malloc(MAX_SIZE * sizeof(int));
int size = 0;
for (int j = 0; res[i][j] != NULL; ++j) {
vals[size++] = res[i][j]->val;
}
printArray(vals, size);
free(vals);
}
// 释放内存

View File

@ -78,12 +78,13 @@ int main() {
printf("\n输出所有根节点到节点 7 的路径,要求路径中不包含值为 3 的节点\n");
for (int i = 0; i < resSize; ++i) {
int vals[MAX_SIZE];
int *vals = malloc(MAX_SIZE * sizeof(int));
int size = 0;
for (int j = 0; res[i][j] != NULL; ++j) {
vals[size++] = res[i][j]->val;
}
printArray(vals, size);
free(vals);
}
// 释放内存

View File

@ -12,8 +12,10 @@ int climbingStairsConstraintDP(int n) {
return 1;
}
// 初始化 dp 表,用于存储子问题的解
int dp[n + 1][3];
memset(dp, 0, sizeof(dp));
int **dp = malloc((n + 1) * sizeof(int *));
for (int i = 0; i <= n; i++) {
dp[i] = calloc(3, sizeof(int));
}
// 初始状态:预设最小子问题的解
dp[1][1] = 1;
dp[1][2] = 0;
@ -24,7 +26,13 @@ int climbingStairsConstraintDP(int n) {
dp[i][1] = dp[i - 1][2];
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
}
return dp[n][1] + dp[n][2];
int res = dp[n][1] + dp[n][2];
// 释放内存
for (int i = 0; i <= n; i++) {
free(dp[i]);
}
free(dp);
return res;
}
/* Driver Code */

View File

@ -7,7 +7,7 @@
#include "../utils/common.h"
/* 求最小值 */
int min(int a, int b) {
int myMin(int a, int b) {
return a < b ? a : b;
}
@ -16,8 +16,10 @@ int coinChangeDP(int coins[], int amt, int coinsSize) {
int n = coinsSize;
int MAX = amt + 1;
// 初始化 dp 表
int dp[n + 1][amt + 1];
memset(dp, 0, sizeof(dp));
int **dp = malloc((n + 1) * sizeof(int *));
for (int i = 0; i <= n; i++) {
dp[i] = calloc(amt + 1, sizeof(int));
}
// 状态转移:首行首列
for (int a = 1; a <= amt; a++) {
dp[0][a] = MAX;
@ -30,11 +32,17 @@ int coinChangeDP(int coins[], int amt, int coinsSize) {
dp[i][a] = dp[i - 1][a];
} else {
// 不选和选硬币 i 这两种方案的较小值
dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);
dp[i][a] = myMin(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);
}
}
}
return dp[n][amt] != MAX ? dp[n][amt] : -1;
int res = dp[n][amt] != MAX ? dp[n][amt] : -1;
// 释放内存
for (int i = 0; i <= n; i++) {
free(dp[i]);
}
free(dp);
return res;
}
/* 零钱兑换:空间优化后的动态规划 */
@ -42,8 +50,7 @@ int coinChangeDPComp(int coins[], int amt, int coinsSize) {
int n = coinsSize;
int MAX = amt + 1;
// 初始化 dp 表
int dp[amt + 1];
memset(dp, MAX, sizeof(dp));
int *dp = calloc(amt + 1, sizeof(int));
dp[0] = 0;
// 状态转移
for (int i = 1; i <= n; i++) {
@ -53,11 +60,14 @@ int coinChangeDPComp(int coins[], int amt, int coinsSize) {
dp[a] = dp[a];
} else {
// 不选和选硬币 i 这两种方案的较小值
dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);
dp[a] = myMin(dp[a], dp[a - coins[i - 1]] + 1);
}
}
}
return dp[amt] != MAX ? dp[amt] : -1;
int res = dp[amt] != MAX ? dp[amt] : -1;
// 释放内存
free(dp);
return res;
}
/* Driver code */

View File

@ -10,8 +10,10 @@
int coinChangeIIDP(int coins[], int amt, int coinsSize) {
int n = coinsSize;
// 初始化 dp 表
int dp[n + 1][amt + 1];
memset(dp, 0, sizeof(dp));
int **dp = malloc((n + 1) * sizeof(int *));
for (int i = 0; i <= n; i++) {
dp[i] = calloc(amt + 1, sizeof(int));
}
// 初始化首列
for (int i = 0; i <= n; i++) {
dp[i][0] = 1;
@ -28,15 +30,20 @@ int coinChangeIIDP(int coins[], int amt, int coinsSize) {
}
}
}
return dp[n][amt];
int res = dp[n][amt];
// 释放内存
for (int i = 0; i <= n; i++) {
free(dp[i]);
}
free(dp);
return res;
}
/* 零钱兑换 II空间优化后的动态规划 */
int coinChangeIIDPComp(int coins[], int amt, int coinsSize) {
int n = coinsSize;
// 初始化 dp 表
int dp[amt + 1];
memset(dp, 0, sizeof(dp));
int *dp = calloc(amt + 1, sizeof(int));
dp[0] = 1;
// 状态转移
for (int i = 1; i <= n; i++) {
@ -50,7 +57,10 @@ int coinChangeIIDPComp(int coins[], int amt, int coinsSize) {
}
}
}
return dp[amt];
int res = dp[amt];
// 释放内存
free(dp);
return res;
}
/* Driver code */

View File

@ -7,12 +7,12 @@
#include "../utils/common.h"
/* 求最小值 */
int min(int a, int b) {
int myMin(int a, int b) {
return a < b ? a : b;
}
/* 编辑距离:暴力搜索 */
int editDistanceDFS(char *s, char *t, int i, int j) {
int editDistanceDFS(char *s, char *t, int i, int j) {
// 若 s 和 t 都为空,则返回 0
if (i == 0 && j == 0)
return 0;
@ -30,11 +30,11 @@ int editDistanceDFS(char *s, char *t, int i, int j) {
int del = editDistanceDFS(s, t, i - 1, j);
int replace = editDistanceDFS(s, t, i - 1, j - 1);
// 返回最少编辑步数
return min(min(insert, del), replace) + 1;
return myMin(myMin(insert, del), replace) + 1;
}
/* 编辑距离:记忆化搜索 */
int editDistanceDFSMem(char *s, char *t, int memCols, int mem[][memCols], int i, int j) {
int editDistanceDFSMem(char *s, char *t, int memCols, int **mem, int i, int j) {
// 若 s 和 t 都为空,则返回 0
if (i == 0 && j == 0)
return 0;
@ -55,14 +55,16 @@ int editDistanceDFSMem(char *s, char *t, int memCols, int mem[][memCols], int i,
int del = editDistanceDFSMem(s, t, memCols, mem, i - 1, j);
int replace = editDistanceDFSMem(s, t, memCols, mem, i - 1, j - 1);
// 记录并返回最少编辑步数
mem[i][j] = min(min(insert, del), replace) + 1;
mem[i][j] = myMin(myMin(insert, del), replace) + 1;
return mem[i][j];
}
/* 编辑距离:动态规划 */
int editDistanceDP(char *s, char *t, int n, int m) {
int dp[n + 1][m + 1];
memset(dp, 0, sizeof(dp));
int **dp = malloc((n + 1) * sizeof(int *));
for (int i = 0; i <= n; i++) {
dp[i] = calloc(m + 1, sizeof(int));
}
// 状态转移:首行首列
for (int i = 1; i <= n; i++) {
dp[i][0] = i;
@ -78,17 +80,21 @@ int editDistanceDP(char *s, char *t, int n, int m) {
dp[i][j] = dp[i - 1][j - 1];
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
dp[i][j] = myMin(myMin(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
int res = dp[n][m];
// 释放内存
for (int i = 0; i <= n; i++) {
free(dp[i]);
}
return res;
}
/* 编辑距离:空间优化后的动态规划 */
int editDistanceDPComp(char *s, char *t, int n, int m) {
int dp[m + 1];
memset(dp, 0, sizeof(dp));
int *dp = calloc(m + 1, sizeof(int));
// 状态转移:首行
for (int j = 1; j <= m; j++) {
dp[j] = j;
@ -106,12 +112,15 @@ int editDistanceDPComp(char *s, char *t, int n, int m) {
dp[j] = leftup;
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;
dp[j] = myMin(myMin(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // 更新为下一轮的 dp[i-1, j-1]
}
}
return dp[m];
int res = dp[m];
// 释放内存
free(dp);
return res;
}
/* Driver Code */
@ -125,10 +134,18 @@ int main() {
printf("将 %s 更改为 %s 最少需要编辑 %d 步\n", s, t, res);
// 记忆化搜索
int mem[n + 1][m + 1];
memset(mem, -1, sizeof(mem));
int **mem = malloc((n + 1) * sizeof(int *));
for (int i = 0; i <= n; i++) {
mem[i] = malloc((m + 1) * sizeof(int));
memset(mem[i], -1, (m + 1) * sizeof(int));
}
res = editDistanceDFSMem(s, t, m + 1, mem, n, m);
printf("将 %s 更改为 %s 最少需要编辑 %d 步\n", s, t, res);
// 释放内存
for (int i = 0; i <= n; i++) {
free(mem[i]);
}
free(mem);
// 动态规划
res = editDistanceDP(s, t, n, m);

View File

@ -7,7 +7,7 @@
#include "../utils/common.h"
/* 求最大值 */
int max(int a, int b) {
int myMax(int a, int b) {
return a > b ? a : b;
}
@ -25,11 +25,11 @@ int knapsackDFS(int wgt[], int val[], int i, int c) {
int no = knapsackDFS(wgt, val, i - 1, c);
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
// 返回两种方案中价值更大的那一个
return max(no, yes);
return myMax(no, yes);
}
/* 0-1 背包:记忆化搜索 */
int knapsackDFSMem(int wgt[], int val[], int memCols, int mem[][memCols], int i, int c) {
int knapsackDFSMem(int wgt[], int val[], int memCols, int **mem, int i, int c) {
// 若已选完所有物品或背包无容量,则返回价值 0
if (i == 0 || c == 0) {
return 0;
@ -46,7 +46,7 @@ int knapsackDFSMem(int wgt[], int val[], int memCols, int mem[][memCols], int i,
int no = knapsackDFSMem(wgt, val, memCols, mem, i - 1, c);
int yes = knapsackDFSMem(wgt, val, memCols, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
// 记录并返回两种方案中价值更大的那一个
mem[i][c] = max(no, yes);
mem[i][c] = myMax(no, yes);
return mem[i][c];
}
@ -54,8 +54,10 @@ int knapsackDFSMem(int wgt[], int val[], int memCols, int mem[][memCols], int i,
int knapsackDP(int wgt[], int val[], int cap, int wgtSize) {
int n = wgtSize;
// 初始化 dp 表
int dp[n + 1][cap + 1];
memset(dp, 0, sizeof(dp));
int **dp = malloc((n + 1) * sizeof(int *));
for (int i = 0; i <= n; i++) {
dp[i] = calloc(cap + 1, sizeof(int));
}
// 状态转移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
@ -64,30 +66,37 @@ int knapsackDP(int wgt[], int val[], int cap, int wgtSize) {
dp[i][c] = dp[i - 1][c];
} else {
// 不选和选物品 i 这两种方案的较大值
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
dp[i][c] = myMax(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[n][cap];
int res = dp[n][cap];
// 释放内存
for (int i = 0; i <= n; i++) {
free(dp[i]);
}
return res;
}
/* 0-1 背包:空间优化后的动态规划 */
int knapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {
int n = wgtSize;
// 初始化 dp 表
int dp[cap + 1];
memset(dp, 0, sizeof(dp));
int *dp = calloc(cap + 1, sizeof(int));
// 状态转移
for (int i = 1; i <= n; i++) {
// 倒序遍历
for (int c = cap; c >= 1; c--) {
if (wgt[i - 1] <= c) {
// 不选和选物品 i 这两种方案的较大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
dp[c] = myMax(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
int res = dp[cap];
// 释放内存
free(dp);
return res;
}
/* Driver Code */
@ -103,10 +112,18 @@ int main() {
printf("不超过背包容量的最大物品价值为 %d\n", res);
// 记忆化搜索
int mem[n + 1][cap + 1];
memset(mem, -1, sizeof(mem));
int **mem = malloc((n + 1) * sizeof(int *));
for (int i = 0; i <= n; i++) {
mem[i] = malloc((cap + 1) * sizeof(int));
memset(mem[i], -1, (cap + 1) * sizeof(int));
}
res = knapsackDFSMem(wgt, val, cap + 1, mem, n, cap);
printf("不超过背包容量的最大物品价值为 %d\n", res);
// 释放内存
for (int i = 0; i <= n; i++) {
free(mem[i]);
}
free(mem);
// 动态规划
res = knapsackDP(wgt, val, cap, wgtSize);

View File

@ -7,7 +7,7 @@
#include "../utils/common.h"
/* 求最小值 */
int min(int a, int b) {
int myMin(int a, int b) {
return a < b ? a : b;
}
@ -17,15 +17,18 @@ int minCostClimbingStairsDP(int cost[], int costSize) {
if (n == 1 || n == 2)
return cost[n];
// 初始化 dp 表,用于存储子问题的解
int dp[n + 1];
int *dp = calloc(n + 1, sizeof(int));
// 初始状态:预设最小子问题的解
dp[1] = cost[1];
dp[2] = cost[2];
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
dp[i] = myMin(dp[i - 1], dp[i - 2]) + cost[i];
}
return dp[n];
int res = dp[n];
// 释放内存
free(dp);
return res;
}
/* 爬楼梯最小代价:空间优化后的动态规划 */
@ -36,7 +39,7 @@ int minCostClimbingStairsDPComp(int cost[], int costSize) {
int a = cost[1], b = cost[2];
for (int i = 3; i <= n; i++) {
int tmp = b;
b = min(a, tmp) + cost[i];
b = myMin(a, tmp) + cost[i];
a = tmp;
}
return b;
@ -46,14 +49,8 @@ int minCostClimbingStairsDPComp(int cost[], int costSize) {
int main() {
int cost[] = {0, 1, 10, 1, 1, 1, 10, 1, 1, 10, 1};
int costSize = sizeof(cost) / sizeof(cost[0]);
printf("输入楼梯的代价列表为 [");
for (int i = 0; i < costSize; i++) {
if (i != costSize - 1)
printf("%d, ", cost[i]);
else
printf("%d", cost[i]);
}
printf("]\n");
printf("输入楼梯的代价列表为:");
printArray(cost, costSize);
int res = minCostClimbingStairsDP(cost, costSize);
printf("爬完楼梯的最低代价为 %d\n", res);

View File

@ -6,13 +6,16 @@
#include "../utils/common.h"
// 假设矩阵最大行列数为 100
#define MAX_SIZE 100
/* 求最小值 */
int min(int a, int b) {
int myMin(int a, int b) {
return a < b ? a : b;
}
/* 最小路径和:暴力搜索 */
int minPathSumDFS(int gridCols, int grid[][gridCols], int i, int j) {
int minPathSumDFS(int grid[MAX_SIZE][MAX_SIZE], int i, int j) {
// 若为左上角单元格,则终止搜索
if (i == 0 && j == 0) {
return grid[0][0];
@ -22,14 +25,14 @@ int minPathSumDFS(int gridCols, int grid[][gridCols], int i, int j) {
return INT_MAX;
}
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
int up = minPathSumDFS(gridCols, grid, i - 1, j);
int left = minPathSumDFS(gridCols, grid, i, j - 1);
int up = minPathSumDFS(grid, i - 1, j);
int left = minPathSumDFS(grid, i, j - 1);
// 返回从左上角到 (i, j) 的最小路径代价
return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
return myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
}
/* 最小路径和:记忆化搜索 */
int minPathSumDFSMem(int gridCols, int grid[][gridCols], int mem[][gridCols], int i, int j) {
int minPathSumDFSMem(int grid[MAX_SIZE][MAX_SIZE], int mem[MAX_SIZE][MAX_SIZE], int i, int j) {
// 若为左上角单元格,则终止搜索
if (i == 0 && j == 0) {
return grid[0][0];
@ -43,17 +46,20 @@ int minPathSumDFSMem(int gridCols, int grid[][gridCols], int mem[][gridCols], in
return mem[i][j];
}
// 左边和上边单元格的最小路径代价
int up = minPathSumDFSMem(gridCols, grid, mem, i - 1, j);
int left = minPathSumDFSMem(gridCols, grid, mem, i, j - 1);
int up = minPathSumDFSMem(grid, mem, i - 1, j);
int left = minPathSumDFSMem(grid, mem, i, j - 1);
// 记录并返回左上角到 (i, j) 的最小路径代价
mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
mem[i][j] = myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
return mem[i][j];
}
/* 最小路径和:动态规划 */
int minPathSumDP(int gridCols, int grid[][gridCols], int n, int m) {
int minPathSumDP(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
// 初始化 dp 表
int dp[n][m];
int **dp = malloc(n * sizeof(int *));
for (int i = 0; i < n; i++) {
dp[i] = calloc(m, sizeof(int));
}
dp[0][0] = grid[0][0];
// 状态转移:首行
for (int j = 1; j < m; j++) {
@ -66,16 +72,21 @@ int minPathSumDP(int gridCols, int grid[][gridCols], int n, int m) {
// 状态转移:其余行列
for (int i = 1; i < n; i++) {
for (int j = 1; j < m; j++) {
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
dp[i][j] = myMin(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
return dp[n - 1][m - 1];
int res = dp[n - 1][m - 1];
// 释放内存
for (int i = 0; i < n; i++) {
free(dp[i]);
}
return res;
}
/* 最小路径和:空间优化后的动态规划 */
int minPathSumDPComp(int gridCols, int grid[][gridCols], int n, int m) {
int minPathSumDPComp(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
// 初始化 dp 表
int dp[m];
int *dp = calloc(m, sizeof(int));
// 状态转移:首行
dp[0] = grid[0][0];
for (int j = 1; j < m; j++) {
@ -87,33 +98,36 @@ int minPathSumDPComp(int gridCols, int grid[][gridCols], int n, int m) {
dp[0] = dp[0] + grid[i][0];
// 状态转移:其余列
for (int j = 1; j < m; j++) {
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
dp[j] = myMin(dp[j - 1], dp[j]) + grid[i][j];
}
}
return dp[m - 1];
int res = dp[m - 1];
// 释放内存
free(dp);
return res;
}
/* Driver Code */
int main() {
int grid[][4] = {{1, 3, 1, 5}, {2, 2, 4, 2}, {5, 3, 2, 1}, {4, 3, 5, 2}};
int n = sizeof(grid) / sizeof(grid[0]), m = sizeof(grid[0]) / sizeof(grid[0][0]);
int grid[MAX_SIZE][MAX_SIZE] = {{1, 3, 1, 5}, {2, 2, 4, 2}, {5, 3, 2, 1}, {4, 3, 5, 2}};
int n = 4, m = 4; // 矩阵容量为 MAX_SIZE * MAX_SIZE ,有效行列数为 n * m
// 暴力搜索
int res = minPathSumDFS(m, grid, n - 1, m - 1);
int res = minPathSumDFS(grid, n - 1, m - 1);
printf("从左上角到右下角的最小路径和为 %d\n", res);
// 记忆化搜索
int mem[n][m];
int mem[MAX_SIZE][MAX_SIZE];
memset(mem, -1, sizeof(mem));
res = minPathSumDFSMem(m, grid, mem, n - 1, m - 1);
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
printf("从左上角到右下角的最小路径和为 %d\n", res);
// 动态规划
res = minPathSumDP(m, grid, n, m);
res = minPathSumDP(grid, n, m);
printf("从左上角到右下角的最小路径和为 %d\n", res);
// 空间优化后的动态规划
res = minPathSumDPComp(m, grid, n, m);
res = minPathSumDPComp(grid, n, m);
printf("从左上角到右下角的最小路径和为 %d\n", res);
return 0;

View File

@ -7,7 +7,7 @@
#include "../utils/common.h"
/* 求最大值 */
int max(int a, int b) {
int myMax(int a, int b) {
return a > b ? a : b;
}
@ -15,8 +15,10 @@ int max(int a, int b) {
int unboundedKnapsackDP(int wgt[], int val[], int cap, int wgtSize) {
int n = wgtSize;
// 初始化 dp 表
int dp[n + 1][cap + 1];
memset(dp, 0, sizeof(dp));
int **dp = malloc((n + 1) * sizeof(int *));
for (int i = 0; i <= n; i++) {
dp[i] = calloc(cap + 1, sizeof(int));
}
// 状态转移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
@ -25,19 +27,23 @@ int unboundedKnapsackDP(int wgt[], int val[], int cap, int wgtSize) {
dp[i][c] = dp[i - 1][c];
} else {
// 不选和选物品 i 这两种方案的较大值
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
dp[i][c] = myMax(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[n][cap];
int res = dp[n][cap];
// 释放内存
for (int i = 0; i <= n; i++) {
free(dp[i]);
}
return res;
}
/* 完全背包:空间优化后的动态规划 */
int unboundedKnapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {
int n = wgtSize;
// 初始化 dp 表
int dp[cap + 1];
memset(dp, 0, sizeof(dp));
int *dp = calloc(cap + 1, sizeof(int));
// 状态转移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
@ -46,11 +52,14 @@ int unboundedKnapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {
dp[c] = dp[c];
} else {
// 不选和选物品 i 这两种方案的较大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
dp[c] = myMax(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
int res = dp[cap];
// 释放内存
free(dp);
return res;
}
/* Driver code */

View File

@ -2,4 +2,7 @@ add_executable(coin_change_greedy coin_change_greedy.c)
add_executable(fractional_knapsack fractional_knapsack.c)
add_executable(max_capacity max_capacity.c)
add_executable(max_product_cutting max_product_cutting.c)
target_link_libraries(max_product_cutting m)
if (NOT CMAKE_C_COMPILER_ID STREQUAL "MSVC")
target_link_libraries(max_product_cutting m)
endif()

View File

@ -6,8 +6,14 @@
#include "../utils/common.h"
#define MIN(a, b) (a < b ? a : b)
#define MAX(a, b) (a > b ? a : b)
/* 求最小值 */
int myMin(int a, int b) {
return a < b ? a : b;
}
/* 求最大值 */
int myMax(int a, int b) {
return a < b ? a : b;
}
/* 最大容量:贪心 */
int maxCapacity(int ht[], int htLength) {
@ -19,8 +25,8 @@ int maxCapacity(int ht[], int htLength) {
// 循环贪心选择,直至两板相遇
while (i < j) {
// 更新最大容量
int capacity = MIN(ht[i], ht[j]) * (j - i);
res = MAX(res, capacity);
int capacity = myMin(ht[i], ht[j]) * (j - i);
res = myMax(res, capacity);
// 向内移动短板
if (ht[i] < ht[j]) {
i++;

View File

@ -38,7 +38,7 @@ int *getMinHeap(MaxHeap *maxHeap) {
int *topKHeap(int *nums, int sizeNums, int k) {
// 初始化小顶堆
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
int empty[0];
int *empty = (int *)malloc(0);
MaxHeap *maxHeap = newMaxHeap(empty, 0);
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {

View File

@ -111,16 +111,6 @@ int popLast(ArrayDeque *deque) {
return num;
}
/* 打印队列 */
void printArrayDeque(ArrayDeque *deque) {
int arr[deque->queSize];
// 拷贝
for (int i = 0, j = deque->front; i < deque->queSize; i++, j++) {
arr[i] = deque->nums[j % deque->queCapacity];
}
printArray(arr, deque->queSize);
}
/* Driver Code */
int main() {
/* 初始化队列 */
@ -130,7 +120,7 @@ int main() {
pushLast(deque, 2);
pushLast(deque, 5);
printf("双向队列 deque = ");
printArrayDeque(deque);
printArray(deque->nums, deque->queSize);
/* 访问元素 */
int peekFirstNum = peekFirst(deque);
@ -141,18 +131,18 @@ int main() {
/* 元素入队 */
pushLast(deque, 4);
printf("元素 4 队尾入队后 deque = ");
printArrayDeque(deque);
printArray(deque->nums, deque->queSize);
pushFirst(deque, 1);
printf("元素 1 队首入队后 deque = ");
printArrayDeque(deque);
printArray(deque->nums, deque->queSize);
/* 元素出队 */
int popLastNum = popLast(deque);
printf("队尾出队元素 = %d ,队尾出队后 deque= ", popLastNum);
printArrayDeque(deque);
printArray(deque->nums, deque->queSize);
int popFirstNum = popFirst(deque);
printf("队首出队元素 = %d ,队首出队后 deque= ", popFirstNum);
printArrayDeque(deque);
printArray(deque->nums, deque->queSize);
/* 获取队列的长度 */
int dequeSize = size(deque);

View File

@ -73,16 +73,6 @@ void pop(ArrayQueue *queue) {
queue->queSize--;
}
/* 打印队列 */
void printArrayQueue(ArrayQueue *queue) {
int arr[queue->queSize];
// 拷贝
for (int i = 0, j = queue->front; i < queue->queSize; i++, j++) {
arr[i] = queue->nums[j % queue->queCapacity];
}
printArray(arr, queue->queSize);
}
/* Driver Code */
int main() {
/* 初始化队列 */
@ -96,7 +86,7 @@ int main() {
push(queue, 5);
push(queue, 4);
printf("队列 queue = ");
printArrayQueue(queue);
printArray(queue->nums, queue->queSize);
/* 访问队首元素 */
int peekNum = peek(queue);
@ -105,7 +95,7 @@ int main() {
/* 元素出队 */
pop(queue);
printf("出队元素 pop = %d ,出队后 queue = ", peekNum);
printArrayQueue(queue);
printArray(queue->nums, queue->queSize);
/* 获取队列的长度 */
int queueSize = size(queue);
@ -120,7 +110,7 @@ int main() {
push(queue, i);
pop(queue);
printf("第 %d 轮入队 + 出队后 queue = ", i);
printArrayQueue(queue);
printArray(queue->nums, queue->queSize);
}
// 释放内存

View File

@ -153,7 +153,7 @@ int popLast(LinkedListDeque *deque) {
/* 打印队列 */
void printLinkedListDeque(LinkedListDeque *deque) {
int arr[deque->queSize];
int *arr = malloc(sizeof(int) * deque->queSize);
// 拷贝链表中的数据到数组
int i;
DoublyListNode *node;
@ -162,6 +162,7 @@ void printLinkedListDeque(LinkedListDeque *deque) {
node = node->next;
}
printArray(arr, deque->queSize);
free(arr);
}
/* Driver Code */

View File

@ -77,7 +77,7 @@ void pop(LinkedListQueue *queue) {
/* 打印队列 */
void printLinkedListQueue(LinkedListQueue *queue) {
int arr[queue->queSize];
int *arr = malloc(sizeof(int) * queue->queSize);
// 拷贝链表中的数据到数组
int i;
ListNode *node;
@ -86,6 +86,7 @@ void printLinkedListQueue(LinkedListQueue *queue) {
node = node->next;
}
printArray(arr, queue->queSize);
free(arr);
}
/* Driver Code */

View File

@ -19,49 +19,33 @@ extern "C" {
#endif
/* Print an Array */
static void printArray(int arr[], int size) {
printf("[");
if (arr != NULL && size != 0) {
for (int i = 0; i < size - 1; i++) {
if (arr[i] != INT_MAX) {
printf("%d, ", arr[i]);
} else {
printf("NULL, ");
}
}
if (arr[size - 1] != INT_MAX) {
printf("%d]\n", arr[size - 1]);
} else {
printf("NULL]\n");
}
} else {
printf("]\n");
void printArray(int arr[], int size) {
if (arr == NULL || size == 0) {
printf("[]");
return;
}
printf("[");
for (int i = 0; i < size - 1; i++) {
printf("%d, ", arr[i]);
}
printf("%d]\n", arr[size - 1]);
}
/* Print an Array */
static void printArrayFloat(float arr[], int size) {
printf("[");
if (arr != NULL && size != 0) {
for (int i = 0; i < size - 1; i++) {
if (arr[i] != INT_MAX) {
printf("%.2f, ", arr[i]);
} else {
printf("NULL, ");
}
}
if (arr[size - 1] != INT_MAX) {
printf("%.2f]\n", arr[size - 1]);
} else {
printf("NULL]\n");
}
} else {
printf("]");
void printArrayFloat(float arr[], int size) {
if (arr == NULL || size == 0) {
printf("[]");
return;
}
printf("[");
for (int i = 0; i < size - 1; i++) {
printf("%.2f, ", arr[i]);
}
printf("%.2f]\n", arr[size - 1]);
}
/* Print a linked list */
static void printLinkedList(ListNode *node) {
void printLinkedList(ListNode *node) {
if (node == NULL) {
return;
}
@ -95,7 +79,7 @@ void showTrunks(Trunk *trunk) {
}
/* Help to print a binary tree, hide more details */
static void printTreeHelper(TreeNode *node, Trunk *prev, bool isRight) {
void printTreeHelper(TreeNode *node, Trunk *prev, bool isRight) {
if (node == NULL) {
return;
}
@ -123,12 +107,12 @@ static void printTreeHelper(TreeNode *node, Trunk *prev, bool isRight) {
}
/* Print a binary tree */
static void printTree(TreeNode *root) {
void printTree(TreeNode *root) {
printTreeHelper(root, NULL, false);
}
/* Print a Heap */
static void printHeap(int arr[], int size) {
void printHeap(int arr[], int size) {
TreeNode *root;
printf("堆的数组表示:");
printArray(arr, size);

View File

@ -9,7 +9,7 @@
vector<TreeNode *> res;
/* 前序遍历:例题一 */
static void preOrder(TreeNode *root) {
void preOrder(TreeNode *root) {
if (root == nullptr) {
return;
}

View File

@ -10,7 +10,7 @@ vector<TreeNode *> path;
vector<vector<TreeNode *>> res;
/* 前序遍历:例题二 */
static void preOrder(TreeNode *root) {
void preOrder(TreeNode *root) {
if (root == nullptr) {
return;
}