2022-11-23 21:39:39 +08:00

5.3 KiB
Raw Blame History

comments
comments
true

归并排序

「归并排序 Merge Sort」是算法中 “分治思想” 的典型体现,其有「划分」和「合并」两个阶段:

  1. 划分: 不断递归地 将数组从中点位置划分开,将长数组的排序问题转化为短数组的排序问题;

  2. 合并: 划分到子数组长度为 1 时,开始向上合并,不断将 左 / 右两个短排序数组 合并为 一个长排序数组,直至合并至原数组时完成排序;

(图)

算法流程

递归划分: 从顶至底递归地 将数组从中点切为两个子数组 ,直至长度为 1

  1. 计算数组中点 mid ,递归划分左子数组(区间 [left, mid] )和右子数组(区间 [mid + 1, right]
  2. 递归执行 1. 步骤,直至子数组区间长度为 1 时,终止递归划分;

回溯合并: 从底至顶将左子数组和右子数组合并为一个 有序数组 ;由于是从长度为 1 的子数组开始合并的,因此 每个子数组也是有序的 ,因此合并任务本质是要 将两个有序子数组合并为一个有序数组

  1. 初始化一个辅助数组 tmp 暂存待合并区间 [left, right] 内的元素,后序通过覆盖原数组 nums 的元素来实现合并;
  2. 初始化指针 i , j , k 分别指向左子数组、右子数组、原数组的首元素;
  3. 循环判断 tmp[i]tmp[j] 的大小,将较小的先覆盖至 nums[k] ,指针 i , j 根据判断结果交替前进(指针 k 也前进),直至两个子数组都遍历完,即可完成合并。

合并代码的实现主要难点:

  • nums 的待合并区间为 [left, right] ,而由于 tmp 只复制了 nums 该区间元素,因此 tmp 对应区间为 [0, right - left] 。以下代码中的 leftStart , leftEnd , rightStart , rightEnd , i , j 都是根据 tmp 定义的,而 k 是根据 nums 定义的。
  • 判断 tmp[i]tmp[j] 的大小的操作中,还 需考虑当子数组遍历完成后的索引越界问题,即 i > leftEndj > rightEnd 的情况,索引越界的优先级是最高的,例如如果左子数组已经被合并完了,那么不用继续判断,直接合并右子数组元素即可。

(动画)

=== "Java"

```java title="merge_sort.java"
/**
 * 合并左子数组和右子数组
 * 左子数组区间 [left, mid]
 * 右子数组区间 [mid + 1, right]
 */
void merge(int[] nums, int left, int mid, int right) {
    int[] tmp = Arrays.copyOfRange(nums, left, right + 1);     // 初始化辅助数组
    int leftStart = left - left, leftEnd = mid - left,         // 左子数组的起始索引和结束索引
        rightStart = mid + 1 - left, rightEnd = right - left;  // 右子数组的起始索引和结束索引
    int i = leftStart, j = rightStart;                // i,j 分别指向左子数组、右子数组的首元素
    // 通过覆盖原数组 nums 来合并左子数组和右子数组
    for (int k = left; k <= right; k++) {
        // 若 “左子数组已全部合并完”,则选取右子数组元素,并且 j++
        if (i > leftEnd)
            nums[k] = tmp[j++];
        // 否则,若 “右子数组已全部合并完” 或 “左子数组元素 < 右子数组元素”,则选取左子数组元素,并且 i++
        else if (j > rightEnd || tmp[i] <= tmp[j])
            nums[k] = tmp[i++];
        // 否则,若 “左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
        else
            nums[k] = tmp[j++];
    }
}

/* 归并排序 */
void mergeSort(int[] nums, int left, int right) {
    // 终止条件
    if (left >= right) return;       // 当子数组长度为 1 时终止递归
    // 递归划分
    int mid = (left + right) / 2;    // 计算数组中点
    mergeSort(nums, left, mid);      // 递归左子数组
    mergeSort(nums, mid + 1, right); // 递归右子数组
    // 回溯合并
    merge(nums, left, mid, right);
}
```

算法特性

  • 时间复杂度 O(n \log n) 划分形成高度为 \log n 的递归树,每层合并的总操作数量为 n ,总体使用 O(n \log n) 时间。
  • 空间复杂度 O(n) 需借助辅助数组实现合并,使用 O(n) 大小的额外空间;递归深度为 \log n ,使用 O(\log n) 大小的栈帧空间。
  • 非原地排序: 辅助数组需要使用 O(n) 额外空间。
  • 稳定排序: 在合并时可保证相等元素的相对位置不变。
  • 非自适应排序: 对于任意输入数据,归并排序的时间复杂度皆相同。

链表排序 *

归并排序有一个很特别的优势,用于排序链表时有很好的性能表现,空间复杂度可被优化至 $O(1)$ ,这是因为:

  • 由于链表可仅通过改变指针来实现结点增删,因此 “将两个短有序链表合并为一个长有序链表” 无需使用额外空间,即回溯合并阶段不用像排序数组一样建立辅助数组 tmp
  • 通过使用「迭代」代替「递归划分」,可省去递归使用的栈帧空间;

!!! quote

详情参考:[148. 排序链表](https://leetcode-cn.com/problems/sort-list/solution/sort-list-gui-bing-pai-xu-lian-biao-by-jyd/)